Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Phytomedicine ; 123: 155241, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128395

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases encountered in clinical practice. Curcumin can alleviate insulin resistance, inhibit oxidative stress response, reduce inflammation, reduce liver fat deposition, and effectively improve NAFLD through various modalities, inhibiting the progression into cirrhosis and fibrosis. PURPOSE: To explore the current status, hot spots, and developing trends of curcumin in NAFLD treatment through quantitative scientific analysis to serve as a reference for subsequent studies. STUDY DESIGN: A comprehensive analysis of the mechanism of action of curcumin in the treatment of NAFLD and methods to increase curcumin bioavailability using bibliometric analysis and literature review. METHODS: This study used VOSviewer software to analyze the literature related to curcumin treatment of NAFLD in the Web of Science (WOS) core set database. A comprehensive and in-depth review was conducted based on the results of scientific econometric research and literature review. RESULTS: The review observed that curcumin can activate various signaling pathways such as AMPK and NF-κB to inhibit oxidative stress and apoptosis, thereby reflecting its pharmacological effects: lowering lipid, anti-inflammatory, reducing insulin resistance, and anti-fibrosis. These mechanisms improve or even reverse the complex pathological features of lipid metabolism disorders associated with NAFLD. Curcumin also can potentially serve as a primary regulatory target for treating hepatic steatosis using gut microbiota. However, these pharmacological effects of curcumin were limited owing to its low bioavailability. CONCLUSION: This review discusses NAFLD treatment with curcumin, analyzes the reasons for its low bioavailability, and introduces models for studying and methods for improving curcumin bioavailability. As research on NAFLD grows, future research should capture the trend of basic research, pay attention to clinical research, and continuously explore the therapeutic potential of curcumin.


Subject(s)
Curcumin , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Curcumin/metabolism , Liver Cirrhosis/metabolism , Inflammation/drug therapy , Liver
2.
Phytomedicine ; 121: 155085, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37757709

ABSTRACT

BACKGROUND: Lamiophlomis Herba (LH) is a valuable traditional medicinal plant found on the Qinghai-Tibetan Plateau that promotes blood circulation, removes blood stasis, and has antibacterial and anti-inflammatory properties. The main components of LH are iridoid glycosides, phenethyl alcohol glycosides, flavonoids, and polysaccharides. PURPOSE: To investigate the mechanism of the anti-liver fibrosis effects of LH and screen for its bioactive compounds. STUDY DESIGN: Screening LH marker components and validating the LH anti-liver fibrosis mechanism. METHODS: The active ingredients of LH were identified using UPLC-Q-TOF-MS, and HotMap combined with principal components analysis (PCA) was used to screen for marker components. Network pharmacology and molecular docking techniques were used to predict the potential anti-fibrotic targets of LH. Immunofluorescence, enzyme-linked immunosorbent assay (ELISA), real-time PCR (RT-PCR), and western blotting were used for experimental validation and mechanistic studies. RESULTS: Fifteen compounds that actively contributed to the cluster were identified as marker compounds. Acteoside, 8-O-acetyl shanzhiside methyl ester (8-O-ASME), Luteolin, Shanzhiside Methyl ester (SME), Loganin, Loganate were the main active components. Network pharmacology and molecular docking studies have shown that LH might improve liver fibrosis, inflammation, and oxidative stress, which might be related to key targets such as PTGS2, MAPK, EGFR, AKT1, SRC, Fn1, Col3a1, Col1a1, and PC-III. The results of ELISA, RT-PCR and western blot experiments showed that Acteoside, 8-O-ASME, Luteolin, SME, Loganin, Loganate, and the LH group could reduce the levels of fibronectin, Col1a1, Col3a1, α-SMA, Col-Ⅳ, LN, and PC-Ⅲ. CONCLUSION: LH improves liver fibrosis induced by HSC-T6 cells and inhibits the deposition of extracellular matrix (ECM) in hepatocytes, resulting in a decrease in the degree of liver fibrosis and a good anti-liver fibrosis effect.


Subject(s)
Drugs, Chinese Herbal , Luteolin , Humans , Molecular Docking Simulation , Liver Cirrhosis/drug therapy , Esters
3.
Int J Mol Sci ; 24(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36902398

ABSTRACT

Influenza A virus (IAV) infections have been a serious hazard to public health everywhere. With the growing concern of drug-resistant IAV strains, there is an urgent need for novel anti-IAV medications, especially those with alternative mechanisms of action. Hemagglutinin (HA), an IAV glycoprotein, plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a good target for developing anti-IAV drugs. Panax ginseng is a widely used herb in traditional medicine with extensive biological effects in various disease models, and its extract was reported to show protection in IAV-infected mice. However, the main effective anti-IAV constituents in panax ginseng remain unclear. Here, we report that ginsenoside rk1 (G-rk1) and G-rg5, out of the 23 screened ginsenosides, exhibit significant antiviral effects against 3 different IAV subtypes (H1N1, H5N1, and H3N2) in vitro. Mechanistically, G-rk1 blocked IAV binding to sialic acid in a hemagglutination inhibition (HAI) assay and an indirect ELISA assay; more importantly, we showed that G-rk1 interacted with HA1 in a dose-dependent manner in a surface plasmon resonance (SPR) analysis. Furthermore, G-rk1 treatment by intranasal inoculation effectively reduced the weight loss and mortality of mice challenged with a lethal dose of influenza virus A/Puerto Rico/8/34 (PR8). In conclusion, our findings reveal for the first time that G-rk1 possesses potent anti-IAV effects in vitro and in vivo. We have also identified and characterized with a direct binding assay a novel ginseng-derived IAV HA1 inhibitor for the first time, which could present potential approaches to prevent and treat IAV infections.


Subject(s)
Ginsenosides , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Animals , Mice , Humans , Antiviral Agents/pharmacology , Ginsenosides/pharmacology , Hemagglutinins/pharmacology , Influenza A Virus, H3N2 Subtype , Virus Attachment , Influenza A virus/physiology
4.
J Med Chem ; 63(22): 13205-13227, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32845145

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to more than 20 million people infected worldwide with an average mortality rate of 3.6%. This virus poses major challenges to public health, as it not only is highly contagious but also can be transmitted by asymptomatic infected individuals. COVID-19 is clinically difficult to manage due to a lack of specific antiviral drugs or vaccines. In this article, Chinese therapy strategies for treating COVID-19 patients, including current applications of traditional Chinese medicine (TCM), are comprehensively reviewed. Furthermore, 72 small molecules from natural products and TCM with reported antiviral activity against human coronaviruses (CoVs) are identified from published literature, and their potential applications in combating SARS-CoV-2 are discussed. Among these, the clinical efficacies of some accessible drugs such as remdesivir (RDV) and favipiravir (FPV) for COVID-19 are emphatically summarized. We hope this review provides a foundation for managing the worsening pandemic and developing antivirals against SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Coronavirus Protease Inhibitors/therapeutic use , Drugs, Chinese Herbal/therapeutic use , SARS-CoV-2/drug effects , Small Molecule Libraries/therapeutic use , COVID-19/epidemiology , China/epidemiology , Humans , Medicine, Chinese Traditional , SARS-CoV-2/enzymology
5.
Viruses ; 10(11)2018 11 21.
Article in English | MEDLINE | ID: mdl-30469357

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a continuous threat to the pork industry as it continues to cause significant economic loss worldwide. Currently, vaccination strategies provide very limited protection against PRRSV transmission. Consequently, there is an urgent need to develop new antiviral strategies. Platycodin D (PD) is one of the major bioactive triterpenoid saponins derived from Platycodon grandiflorum, a traditional Chinese medicine used as an expectorant for pulmonary diseases and a remedy for respiratory disorders. Here, we demonstrate that PD exhibits potent activity against PRRSV infection in Marc-145 cells and primary porcine alveolar macrophages. PD exhibited broad-spectrum inhibitory activities in vitro against high pathogenic type 2 PRRSV GD-HD strain and GD-XH strain as well as classical CH-1a and VR2332 strains. PD at concentrations ranging 1⁻4 µM significantly inhibited PRRSV RNA synthesis, viral protein expression and progeny virus production in a dose-dependent manner. EC50 values of PD against four tested PRRSV strains infection in Marc-145 cells ranged from 0.74 to 1.76 µM. Mechanistically, PD inhibited PRRSV replication by directly interacting with virions therefore affecting multiple stages of the virus life cycle, including viral entry and progeny virus release. In addition, PD decreased PRRSV- and LPS-induced cytokine (IFN-α, IFN-ß, IL-1α, IL-6, IL-8 and TNF-α) production in PAMs. Altogether, our findings suggested that PD is a potent inhibitor of PPRSV infection in vitro. However, further in vivo studies are necessary to confirm PD as a potential novel and effective PPRSV inhibitor in swine.


Subject(s)
Antiviral Agents/pharmacology , Porcine respiratory and reproductive syndrome virus/drug effects , Porcine respiratory and reproductive syndrome virus/physiology , Saponins/pharmacology , Triterpenes/pharmacology , Virus Replication/drug effects , Animals , Cells, Cultured , Microbial Sensitivity Tests , Swine , Virus Internalization/drug effects , Virus Release/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL