Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240065

ABSTRACT

Yin Yang 1 (YY1) is a well-known transcription factor that controls the expression of many genes and plays an important role in the occurrence and development of various cancers. We previously found that the human males absent on the first (MOF)-containing histone acetyltransferase (HAT) complex may be involved in regulating YY1 transcriptional activity; however, the precise interaction between MOF-HAT and YY1, as well as whether the acetylation activity of MOF impacts the function of YY1, has not been reported. Here, we present evidence that the MOF-containing male-specific lethal (MSL) HAT complex regulates YY1 stability and transcriptional activity in an acetylation-dependent manner. First, the MOF/MSL HAT complex was bound to and acetylated YY1, and this acetylation further promoted the ubiquitin-proteasome degradation pathway of YY1. The MOF-mediated degradation of YY1 was mainly related to the 146-270 amino acid residues of YY1. Further research clarified that acetylation-mediated ubiquitin degradation of YY1 mainly occurred through lysine 183. A mutation at the YY1K183 site was sufficient to alter the expression level of p53-mediated downstream target genes, such as CDKN1A (encoding p21), and it also suppressed the transactivation of YY1 on CDC6. Furthermore, a YY1K183R mutant and MOF remarkably antagonized the clone-forming ability of HCT116 and SW480 cells facilitated by YY1, suggesting that the acetylation-ubiquitin mode of YY1 plays an important role in tumor cell proliferation. These data may provide new strategies for the development of therapeutic drugs for tumors with high expression of YY1.


Subject(s)
Transcription Factors , Ubiquitin , Male , Humans , HCT116 Cells , Acetylation , Transcription Factors/metabolism , Ubiquitin/metabolism , Protein Stability , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
2.
RSC Adv ; 9(23): 12913-12920, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-35520807

ABSTRACT

Six new heptaketides, pleosporalins A-F (1-5, and 7), and a new heptaketide derivative, pleosporalin G (9), together with four biosynthetically related known compounds (6, 8, 10, and 11), were isolated from an endophytic fungus, Pleosporales sp. F46, found in the medicinal plant Mahonia fortunei. The structures and stereochemistry of these compounds were established by extensive spectroscopic analyses including LC-HRMS, NMR spectroscopy, optical rotations, ECD calculations, and single-crystal X-ray diffraction. The antifungal activities of isolated compounds 1-11 were investigated against Candida albicans, and their cytotoxic activities were evaluated against A549, SMMC-721, and MDA-MB-231 cancer cell lines. Compound 1 was active against C. albicans with an MIC80 of 128 µg mL-1, and compound 7 showed moderate cytotoxicity against MDA-MB-231 with an IC50 of 22.4 ± 1.1 µM. By comparing compounds 1 and 7 with structurally related metabolites, it was revealed that alterations to their C-1 or C-2 substitutions could significantly influence their antifungal or cytotoxic efficacies.

SELECTION OF CITATIONS
SEARCH DETAIL