Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Agric Food Chem ; 72(11): 6040-6052, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38454851

ABSTRACT

One type of large and intricate post-translational modification of milk proteins that has significant biological implications is phosphorylation. The characterization of phosphoproteins found in the bovine milk fat globule membrane (MFGM) is still mostly unknown. Here, label-free phosphoproteomics was used to identify 94 phosphorylation sites from 54 MFGM phosphoproteins in bovine colostrum (BC) and 136 phosphorylation sites from 91 MFGM phosphoproteins in bovine mature milk (BM). αs1-Casein and ß-casein were the most phosphorylated proteins in bovine colostrum. In bovine mature milk, perilipin-2 was the protein with the greatest number of phosphorylation sites. The results show that bovine colostrum MFGM phosphoproteins were mainly involved in immune function, whereas bovine mature MFGM phosphoproteins were mainly involved in metabolic function. Plasminogen and osteopontin were the most strongly interacting proteins in colostrum, whereas perilipin-2 was the most strongly interacting protein in bovine mature milk. This work demonstrates the unique alterations in the phosphorylation manner of the bovine MFGM protein during lactation and further expands our knowledge of the site characteristics of bovine MFGM phosphoproteins. This result confirms the value of MFGM as a reference ingredient for infant formula during different stages.


Subject(s)
Colostrum , Glycoproteins , Milk , Female , Pregnancy , Infant , Humans , Animals , Colostrum/metabolism , Perilipin-2/metabolism , Milk/metabolism , Glycolipids/metabolism , Lipid Droplets/metabolism , Milk Proteins/metabolism , Caseins/metabolism
2.
Huan Jing Ke Xue ; 45(1): 364-375, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216486

ABSTRACT

In this study, we sought to quantify the effect of planting structure change on fertilizer input and environmental cost in Chongqing and develop scientific and rational strategies for chemical fertilizer reduction. Based on the crop fertilizer quota standard and large sample farmer survey data under the medium productivity level in Chongqing, we evaluated and analyzed the application reduction potential and environmental benefits of fertilizer with the difference method and life cycle assessment. The results showed that:① since Chongqing became a municipality directly under the central government (1997), Chongqing crop planting structure had greatly changed, and the proportion of food crop (rice, corn, wheat, bean, and potato) decreased by 21%. The area of fruits and vegetables increased from 3.36×105 hm2 to 1.05×106 hm2, and their proportion increased by 20%. ② Nearly 55% of fertilizers had been consumed by vegetable (37%) and citrus production systems, and 11%, 12%, and 12% of fertilizers were consumed by rice, corn, and potato, respectively. ③ The total fertilizer reduction of the Chongqing planting industry could reach up to 1.69×105 tons during the period of "the 14th Five-Year Plan," with a fertilizer reduction potential of 18.6%. The fertilizer reduction potential (reduction amount) of rice, corn, citrus, and vegetables would reach 0.3% (2.9×102 tons), 12% (1.45×104 tons), 21% (3.65×104 tons), and 30% (1.18×105 tons), respectively. On the other hand, the rape system was insufficient in phosphorus potassium fertilizers, and the corn tended to be insufficient in potash fertilizer. ④ The current production level was low, and the nitrogen loss, greenhouse gas emissions, and eutrophication potential in the planting industry of Chongqing reached 1.81×105 tons (N), 1.43×107 tons (CO2-eq), and 1.74×105 tons (PO4-eq). With the increase in the realization degree of the crop quota standard (60%-100%), the reactive nitrogen loss, greenhouse gas emissions, and eutrophication potential decreased by 14.9%-24.9%, 10.1%-16.7%, and 13.8%-23%, respectively. The structure of the planting industry in Chongqing significantly changed, the total fertilizer consumption in Chongqing tended to decline gradually, and the fertilization intensity of commercial crops stayed at a high level. The agricultural fertilizer reduction potential and the reactive nitrogen and greenhouse gas emission reduction potential were large, especially for citrus and vegetable production systems. However, it is also necessary to pay attention to insufficient corn potash fertilizer and rape phosphorus potassium fertilizer investment and carry out collaborative promotion of fertilizer reduction.


Subject(s)
Greenhouse Gases , Oryza , Fertilizers/analysis , Greenhouse Gases/analysis , Agriculture/methods , Vegetables , Nitrogen/analysis , Phosphorus/analysis , Potassium , China , Soil/chemistry , Nitrous Oxide/analysis
3.
Int Urol Nephrol ; 56(2): 571-582, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37552392

ABSTRACT

Diabetic kidney disease (DKD) is a serious complication of diabetes and is the primary cause of end-stage renal disease. Current treatment strategies primarily focus on the inhibition of the renin-angiotensin-aldosterone system and the attainment of blood glucose control. Although current medical therapies for DKD have been shown to delay disease progression and improve long-term outcomes, their efficacy is limited and they may be restricted in certain cases, particularly when hyperkalemia is present. Traditional Chinese medicine (TCM) treatment has emerged as a significant complementary approach for DKD. TCM monomers, derived from various Chinese herbs, have been found to modulate multiple therapeutic targets and exhibit a broad range of therapeutic effects in patients with DKD. This review aims to summarize the mechanisms of action of TCM monomers in the treatment of DKD, based on findings from clinical trials, as well as cell and animal studies. The results of these investigations demonstrate the potential effective use of TCM monomers in treating or preventing DKD, offering a promising new direction for future research in the field. By providing a comprehensive overview of the mechanisms and efficacy of TCM monomers in DKD, this review highlights the potential of these natural compounds as alternative therapeutic options for improving outcomes in patients with DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Kidney Failure, Chronic , Humans , Diabetic Nephropathies/drug therapy , Renin-Angiotensin System
4.
Nat Food ; 4(9): 762-773, 2023 09.
Article in English | MEDLINE | ID: mdl-37550541

ABSTRACT

The spatio-temporal distribution, flow and end use of phosphorus (P) embedded in traded agricultural products are poorly understood. Here we use global trade matrices to analyse the partial factor productivity of P (output per unit of P input) for crop and livestock products in 200 countries and their cumulative contributions to the export or import of agricultural products over 1961-2019. In these six decades, the trade of agricultural P products has increased global partial factor productivity for crop and livestock production and has theoretically saved 67 Tg P in fertilizers and 1.6 Tg P in feed. However, trade is now at risk of contributing to wasteful use of P resources globally due to a decline in trade optimality, as agricultural products are increasingly exported from low to high partial factor productivity countries and due to P embedded in imported agricultural products mainly lost to the environment without recycling. Integrated crop-livestock production systems and P-recycling technologies can help.


Subject(s)
Agriculture , Phosphorus , Crop Production
5.
J Sci Food Agric ; 103(15): 7816-7828, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37450651

ABSTRACT

BACKGROUND: Efficient utilization of phosphorus (P) has been a major challenge for sustainable agriculture. However, the responses of fertilizer rate, region, soil properties, cropping systems and genotypes to P have not been investigated comprehensively and systematically. RESULTS: A comprehensive analysis of 9863 fertilizer-P experiments on rice cultivation in China showed that rice yield  increased first and then fell down with the addition of P fertilizer, and the highest yield of 7963 kg ha-1 was observed under 100% P treatment. Under 100% P treatment, the yield response of applied P (YRP ) and agronomic efficiency of applied P (AEP ) were 12.8% and 30.1 kg ha-1 , respectively. Lower soil pH (< 5.5) and organic matter (< 30.0 g kg-1 ) were associated with lower YRP and AEP . By contrast, soil available P < 25.0 mg kg-1 resulted in decreased YRP (15.3 to 11.4%) and AEP (32.3 kg kg-1 to 26.2 kg kg-1 ), whereas soil available P > 25.0 mg kg-1 maintained the relatively stable YRP and AEP . Also, the YRP and AEP were significantly higher for single-cropping rice compared to other cropping systems. Moreover, the rice genotypes such as 'Longdun', 'Kendao' and 'Jigeng' had higher YRP and AEP than the average value. Overall, the fertilizer-P rate was the primary factor affecting YRP and AEP , and the recommended P fertilizer rate can be reduced by 9-21 kg P ha-1 compared to existing expert recommendations. CONCLUSION: The present study highlights the role of fertilizer-P rate in maximizing the YRP and AEP , thereby providing a strong basis for future fertilizer management in rice cultivation systems. © 2023 Society of Chemical Industry.


Subject(s)
Fertilizers , Oryza , Agriculture/methods , China , Fertilizers/analysis , Nitrogen/analysis , Oryza/growth & development , Phosphorus/analysis , Soil/chemistry
6.
Food Res Int ; 162(Pt A): 111938, 2022 12.
Article in English | MEDLINE | ID: mdl-36461196

ABSTRACT

Donkey colostrum milk fat globule membrane (DCMFGM) proteins are involved in multiple biological functions. However, the effect of N-glycosylation on their physiological properties are unknown. The aim of this study was to map the DCMFGM protein site-specific N-glycosylation landscape using a label-free glycoproteomic approach. A total of 1,443 unique intact N-glycopeptides mapping to 453 unique N-glycosites on 336 N-glycoproteins were identified. The macro- and microheterogeneity of DCMFGM glycoproteins were explored at the N-glycosite level and the site-specific N-glycan level, respectively, and it was found that the N-glycosylation profiles of the DCMFGM proteins varied based on subcellular localisation and protein domain types. Our findings reveal the heterogeneity and functional diversity of N-glycosylation of DCMFGM proteins and provide theoretical support for the promotion of DCMFGM proteins as a functional food ingredient.


Subject(s)
Colostrum , Membrane Proteins , Female , Pregnancy , Animals , Glycosylation , Equidae , Glycoproteins
7.
Sci Total Environ ; 804: 150125, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34520912

ABSTRACT

Phosphorus (P) from detergents contributes to water pollution and eutrophication. Understanding the impacts of detergent use on P inputs to surface waters and their main drivers is vital for supporting Sustainable Development Goals on clean water. This study aims to quantify past and future trends in P inputs to surface waters from detergent use in China. We modify the Model to Assess River Input of Nutrient to seAs (MARINA) model to assess the effects of past policies and explore options for the future on mitigating detergents P losses in China. The total consumption of detergents tripled from 2000 to 2018. However, P inputs to surface waters from detergent use decreased by 35% during these years. Although P losses vary across regions, most losses occurred in rural areas. Clearly, the P-free detergent policy which was initiated in the year 2000 has been effective. Without this policy, the detergent P losses would likely have increased fourfold during 2000-2018. In the future, detergent P inputs to surface waters in China may be further reduced to very low levels (95% reduction relative to 2018) by a combination of completely P-free detergents, an increasing urbanized population connected to sewage systems, and improving P removal in sewage treatment systems. Our results enhance the understanding of P pollution in surface waters from detergents and, illustrate the effectiveness of measures to control detergent P losses.


Subject(s)
Detergents , Phosphorus , China , Eutrophication , Nitrogen/analysis , Phosphorus/analysis , Water Pollution
8.
Environ Pollut ; 289: 117881, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34352630

ABSTRACT

Magnesium (Mg) is one of essential plant nutrients needed for optimal growth, yield and quality formation. Also, soil application of Mg fertilizer has been shown to be an effective approach to improve vegetable Mg nutrition. Leafy vegetables can accumulate relatively high levels of heavy metals in the above-ground plant parts. However, it remains unclear as to whether soil-applied Mg affects the vegetable nutritional quality and human health risk of heavy metals from field-grown Chinese cabbage. Here we conducted a two-year, two-crop cycle field experiment in south-western China to evaluate crop yield, vegetable nutrition and heavy metal accumulation in Chinese cabbage supplied with varying levels of Mg (0-90 kg ha-1). Soil application of Mg did not increase the cabbage yield. However, it did increase the vegetable vitamin C and water-soluble protein content by 20.0 % and 57.9 % with 45 and 22.5 kg Mg ha-1 application, respectively, compared to control. The nitrate content of Mg-supplied (45 kg ha-1) cabbages was significantly lower, by about 14 %, than the control. Further, it also significantly decreased the accumulation of cadmium and nickel in the above-ground tissues by reducing their uptake from soil to root or their translocation from root to shoot. Magnesium application, however, increased chromium uptake. A human health risks assessment nonetheless showed that the contribution of chromium from Mg-supplied plants to threshold hazard quotient and threshold carcinogenic risk were indeed much lower than that of cadmium and nickel, proving the value of crop Mg supplementation for ameliorating non-carcinogenic and carcinogenic risks to humans with the consumption of Chinese cabbage. Here we show that soil application of Mg in the range of 22.5-45 kg ha-1 to Chinese cabbage will significantly improve its nutritional qualities and alleviate the potential human health risks of heavy metals associated with Chinese cabbage consumption.


Subject(s)
Brassica , Metals, Heavy , Soil Pollutants , China , Environmental Monitoring , Humans , Magnesium , Metals, Heavy/analysis , Nutritive Value , Soil Pollutants/analysis
9.
Environ Pollut ; 269: 116098, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33246759

ABSTRACT

Overuse of phosphorus (P) fertilizer and the resulting soil P accumulation in vegetable production increases the risk of P runoff and leaching. However, P transformations under continuous fertilization and their effects on environmental risk are unclear. The current study examined the effects of long-term P fertilizer application on P fractions in different soil layers, and assessed the correlations between P fractions and environmental risks in intensive vegetable production in a subtropical region. A total of 32 fields were studied, including 8 uncultivated fields and 24 fields continuously used for vegetable production for 1-3, 4-9, or 10-15 years. The results showed that excessive P fertilizer input caused soil P surpluses ranging from 204.6 to 252.4 kg ha-1 yr-1. Compared to uncultivated fields, vegetable fields contained higher levels of labile P, moderately labile P, sparingly labile P, and non-labile P. The combined percentage of labile P and moderately labile P increased from 55.2% in fields cultivated for 0-3 year to 65.5% in fields cultivated for 10-15 years. The concentrations of soil P fractions were higher at 0-20 cm soil depth than at 20-40 and 40-60 cm soil depth. Soil available P was positively correlated with all soil P fractions except diluted HCl-Pi or concentrated HCl-Po. Long-term vegetable production increased CaCl2-P downward movement, which was positively correlated with levels of labile and moderately labile P. The P index indicated a high risk of P losses from the vegetable fields. The P index was on average 3.27-fold higher in the vegetable fields than in uncultivated fields, and was significantly correlated with soil available P and organic and inorganic P fertilizer input. The environmental risk caused by P in vegetable production should be reduced by reducing P fertilizer input so as to maintain soil available P within an optimal range for vegetable production.


Subject(s)
Phosphorus , Vegetables , Agriculture , China , Fertilization , Fertilizers , Phosphorus/analysis , Soil
10.
Environ Pollut ; 262: 114348, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32182536

ABSTRACT

Phosphorus (P) fertilizer is widely used to increase wheat yield. However, it remains unclear whether prolonged intake of wheat grain that received long-term P application may promote human health risks by influencing heavy metal(loid)s (HMs) accumulation. A 10-year field experiment was conducted to evaluate the effects of continuous P application (0, 25, 50, 100, 200, and 400 kg P ha-1) on human health risks of HMs, including zinc (Zn), copper (Cu), cadmium (Cd), lead (Pb), arsenic (As), nickel (Ni), and chromium (Cr), by ingesting wheat grain. The results showed that P application facilitated Zn, Pb, Cd, and As accumulation in the topsoil. The Zn, Cu, Pb, and Ni concentrations in grain were decreased, while Cd and As were increased by P application. All HMs concentrations of both soil and grain were in the ranges of corresponding safety thresholds at different P levels. The accumulation abilities of Zn, Cu, Pb, and Ni from soil and straw to grain were suppressed by P addition while of As was enhanced. There was no significant difference in the hazard index (HI) of the investigated HMs in all treatments except 25 kg ha-1. The threshold cancer risk (TCR) associated with As and Cd was enhanced, while that of Pb was alleviated as P application increased. Behaviors of Cr from soil to wheat and to humans were not affected by P application. Phosphorus application at a rate of 50 kg ha-1 decreased total non-cancer and cancer risks by 15% and 21%, respectively, for both children and adults, compared to the highest value. In conclusion, long-term optimal application of 50 kg P ha-1 to wheat did not result in additional adverse effects on the total non-carcinogenic or carcinogenic risk caused by the studied HMs to humans through the ingestion of wheat grain.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Adult , Child , China , Environmental Monitoring , Fertilizers , Humans , Phosphorus , Risk Assessment , Soil , Triticum
11.
Sci Rep ; 9(1): 16580, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719561

ABSTRACT

Although researchers have determined that attaining high grain yields of winter wheat depends on the spike number and the shoot biomass, a quantitative understanding of how phosphorus (P) nutrition affects spike formation, leaf expansion and photosynthesis is still lacking. A 3-year field experiment with wheat with six P application rates (0, 25, 50, 100, 200, and 400 kg P ha-1) was conducted to investigate this issue. Stem development and mortality, photosynthetic parameters, dry matter accumulation, and P concentration in whole shoots and in single tillers were studied at key growth stages for this purpose. The results indicated that spike number contributed the most to grain yield of all the yield components in a high-yielding (>8 t/ha) winter wheat system. The main stem (MS) contributed 79% to the spike number and tiller 1 (T1) contributed 21%. The 2.7 g kg-1 tiller P concentration associated with 15 mg kg-1 soil Olsen-P at anthesis stage led to the maximal rate of productive T1s (64%). The critical shoot P concentration that resulted in an adequate product of Pn and LAI was identified as 2.1 g kg-1. The thresholds of shoot P concentration that led to the maximum productive ability of T1 and optimal canopy photosynthetic capacity at anthesis were very similar. In conclusion, the thresholds of soil available P and shoot P concentration in whole plants and in single organs (individual tillers) were established for optimal spike formation, canopy photosynthetic capacity, and dry matter accumulation. These thresholds could be useful in achieving high grain yields while avoiding excessive P fertilization.


Subject(s)
Fertilizers , Phosphorus/metabolism , Photosynthesis , Plant Shoots/physiology , Seasons , Soil/chemistry , Triticum/physiology , Plant Shoots/growth & development , Triticum/growth & development , Water
12.
Sci Rep ; 7(1): 7016, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28765540

ABSTRACT

Increasing grain zinc (Zn) concentration of cereals for minimizing Zn malnutrition in two billion people represents an important global humanitarian challenge. Grain Zn in field-grown wheat at the global scale ranges from 20.4 to 30.5 mg kg-1, showing a solid gap to the biofortification target for human health (40 mg kg-1). Through a group of field experiments, we found that the low grain Zn was not closely linked to historical replacements of varieties during the Green Revolution, but greatly aggravated by phosphorus (P) overuse or insufficient nitrogen (N) application. We also conducted a total of 320-pair plots field experiments and found an average increase of 10.5 mg kg-1 by foliar Zn application. We conclude that an integrated strategy, including not only Zn-responsive genotypes, but of a similar importance, Zn application and field N and P management, are required to harvest more grain Zn and meanwhile ensure better yield in wheat-dominant areas.


Subject(s)
Agriculture/methods , Edible Grain/chemistry , Triticum/chemistry , Triticum/growth & development , Zinc/analysis , Fertilizers , Genotype , Humans , Nitrogen/metabolism , Phosphorus/metabolism , Triticum/genetics , Triticum/metabolism
13.
Nutrients ; 9(5)2017 May 06.
Article in English | MEDLINE | ID: mdl-28481273

ABSTRACT

Zinc (Zn) deficiency is a common disorder of humans in developing countries. The effect of Zn biofortification (via application of six rates of Zn fertilizer to soil) on Zn bioavailability in wheat grain and flour and its impacts on human health was evaluated. Zn bioavailability was estimated with a trivariate model that included Zn homeostasis in the human intestine. As the rate of Zn fertilization increased, the Zn concentration increased in all flour fractions, but the percentages of Zn in standard flour (25%) and bran (75%) relative to total grain Zn were constant. Phytic acid (PA) concentrations in grain and flours were unaffected by Zn biofortification. Zn bioavailability and the health impact, as indicated by disability-adjusted life years (DALYs) saved, increased with the Zn application rate and were greater in standard and refined flour than in whole grain and coarse flour. The biofortified standard and refined flour obtained with application of 50 kg/ha ZnSO4·7H2O met the health requirement (3 mg of Zn obtained from 300 g of wheat flour) and reduced DALYs by >20%. Although Zn biofortification increased Zn bioavailability in standard and refined flour, it did not reduce the bioavailability of iron, manganese, or copper in wheat flour.


Subject(s)
Biofortification/methods , Biological Availability , Flour/analysis , Food, Fortified , Triticum/chemistry , Zinc/pharmacokinetics , Edible Grain/chemistry , Fertilizers/analysis , Food, Fortified/analysis , Humans , Micronutrients/pharmacokinetics , Phytic Acid/analysis , Soil/chemistry , Zinc/analysis , Zinc/deficiency
14.
J Agric Food Chem ; 65(8): 1473-1482, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28171726

ABSTRACT

To supplement human dietary nutrition, it is necessary to evaluate the effects of phosphorus (P) fertilizer application on grain and flour protein contents and especially on the bioavailability of zinc (Zn). A field experiment of winter wheat with six P application rates (0, 25, 50, 100, 200, 400 kg/ha) was conducted from 2013 to 2015. The grain yield increased with P application but was not further enhanced when P rates exceeded 50 kg/ha. As P application increased, the protein concentration in grain and standard flour and the viscosity of standard flour decreased. Phosphorus and phytic acid (PA) concentrations in grain and flours increased and then plateaued, whereas Zn concentration decreased and then plateaued as P application increased from 0 to 100 kg/ha. Estimated Zn bioavailability in grain and flours decreased as P application increased from 0 to 100 kg/ha and then plateaued. Estimated Zn bioavailability was greater in standard flour, bread flour, and refined flour than in grain or coarse flour. Phosphorus supply in the intensive cropping of wheat can be optimized to simultaneously obtain high grain yields, high grain and flour protein contents, and high Zn bioavailability.


Subject(s)
Fertilizers/analysis , Flour/analysis , Phosphorus/metabolism , Plant Proteins/analysis , Triticum/metabolism , Zinc/metabolism , Bread/analysis , Phosphorus/analysis , Plant Proteins/metabolism , Seeds/chemistry , Seeds/metabolism , Triticum/chemistry , Triticum/growth & development , Zinc/analysis
15.
PLoS One ; 9(3): e90287, 2014.
Article in English | MEDLINE | ID: mdl-24594677

ABSTRACT

Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg(-1), and the threshold indicating a significant environmental risk was about 15 mg kg(-1), which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg(-1), indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots.


Subject(s)
Phosphorus/analysis , Plant Roots/physiology , Soil/chemistry , Zea mays/physiology , Base Sequence , DNA Primers , Polymerase Chain Reaction
16.
J Exp Bot ; 64(5): 1403-11, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23382547

ABSTRACT

The adaptations of root morphology, physiology, and biochemistry to phosphorus supply have been characterized intensively. However, characterizing these adaptations at molecular level is largely neglected under field conditions. Here, two consecutive field experiments were carried out to investigate the agronomic traits and root traits of wheat (Triticum aestivum L.) at six P-fertilizer rates. Root samples were collected at flowering to investigate root dry weight, root length density, arbusular-mycorrhizal colonization rate, acid phosphatase activity in rhizosphere soil, and expression levels of genes encoding phosphate transporter, phosphatase, ribonucleases, and expansin. These root traits exhibited inducible, inhibitory, or combined responses to P deficiency, and the change point for responses to P supply was at or near the optimal P supply for maximum grain yield. This research improves the understanding of mechanisms of plant adaptation to soil P in intensive agriculture and provides useful information for optimizing P management based on the interactions between soil P dynamics and root processes.


Subject(s)
Phosphorus/pharmacology , Plant Roots/anatomy & histology , Plant Roots/genetics , Triticum/anatomy & histology , Triticum/genetics , Biomass , Flowers/drug effects , Flowers/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Phosphorus/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/metabolism , Soil , Triticum/drug effects , Triticum/growth & development
17.
Ying Yong Sheng Tai Xue Bao ; 24(10): 2799-806, 2013 Oct.
Article in Chinese | MEDLINE | ID: mdl-24483073

ABSTRACT

A 2-year field experiment was conducted in 2011 and 2012 to investigate the effects of phosphorus (P) fertilization on the leaf area index (LAI), dry matter accumulation (DMA), and P use efficiency (PUE) of maize in wheat/maize/soybean intercropping system. Five P fertilization rates were installed, i.e., 0, 45, 90, 135, and 180 kg P2O5 x hm(-2) for wheat, marked as WP0, WP1, WP2, WP3, and WP4, respectively, and 0, 37.5, 75, 112.5, and 150 kg P2O5 x hm(-2) for maize, marked as MP0, MP1, MP2, MP3, and MP4, respectively. During the coexisted growth periods of wheat and maize, P fertilization increased the LAI, leaf area duration (LAD), and stem and leaf DMA of maize significantly. After the jointing stage of maize, the maize LAI, LAD, DMA, and crop growth rate (CGR) all decreased after an initial increase with the increasing P rate, with the maximum growth in treatment MP2 or MP3. During the reproductive stage of maize, the maize dry mass translocation from vegetative to reproductive organ increased with increasing P fertilization rate, and the grain yield of both maize and whole cropping system increased firstly and decreased then, with the maximum grain yield of maize and whole cropping system being 6588 and 11955 kg x hm(-2) in treatment P3, respectively. The P apparent recovery efficiency of maize was the highest (26.3%) in treatment MP2, being 82.6%, 38.4%, and 152.9% higher than that in MP1 (14.4%), MP3 (19.0%), and MP4 (10.4%), respectively. In sum, for the wheat/maize/soybean intercropping system, applying appropriate amount of P fertilizer could promote maize growth, alleviate the impact of wheat on maize, and consequently, increase the P apparent recovery efficiency of maize. In this study, the appropriate P fertilization rate was 75-112.5 kg P2O5 x hm(-2).


Subject(s)
Agriculture/methods , Biomass , Phosphorus/metabolism , Plant Leaves , Zea mays/growth & development , Fertilizers , Plant Leaves/anatomy & histology , Glycine max/growth & development , Triticum/growth & development , Zea mays/metabolism
18.
Curr Opin Biotechnol ; 23(6): 866-71, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22445911

ABSTRACT

Phosphorus (P) is one of the three macronutrients for plants. Because of its low mobility and high fixation in soils, low P availability is a worldwide constraint for crop productivity. Molecular biology provides great opportunities to improve P efficiency in plants. However, transgenic plants cannot be commercialized before integrating all the knowledge on bottlenecks for improving P efficiency of crops/pastures. This review intends to summarize the main strategies of bioengineering to improve P efficiency of crops/pastures, including conventional and molecular assisted breeding, identification and application of key genes for biotech plants. It highlights recent advances in the understanding of improving P efficiency through the integration of bioengineering with P fertilization and cultivation management.


Subject(s)
Agriculture/methods , Crops, Agricultural/metabolism , Phosphorus/metabolism , Bioengineering , Breeding , Fertilizers , Genetic Engineering , Plant Roots/anatomy & histology , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Rhizosphere , Selection, Genetic , Signal Transduction
20.
Plant Physiol ; 155(3): 1277-85, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21224339

ABSTRACT

Root is a primary organ to respond to environmental stimuli and percept signals from neighboring plants. In this study, root responses in maize (Zea mays)/soybean (Glycine max) intercropping systems recognized soil phosphorus (P) status and neighboring plants in the field. Compared to self culture, the maize variety GZ1 intercropping with soybean HX3 grew much better on low P, but not in another maize variety, NE1. This genotypic response decreased with increasing distance between plants, suggesting that root interactions were important. We further conducted a detailed and quantitative study of root behavior in situ using a gel system to reconstruct the three-dimensional root architecture. The results showed that plant roots could integrate information on P status and root behavior of neighboring plants. When intercropped with its kin, maize or soybean roots grew close to each other. However, when maize GZ1 was grown with soybean HX3, the roots on each plant tended to avoid each other and became shallower on stratified P supply, but not found with maize NE1. Furthermore, root behavior in gel was highly correlated to shoot biomass and P content for field-grown plants grown in close proximity. This study provides new insights into the dynamics and complexity of root behavior and kin recognition among crop species in response to nutrient status and neighboring plants. These findings also indicate that root behavior not only depends on neighbor recognition but also on a coordinated response to soil P status, which could be the underlying cause for the different growth responses in the field.


Subject(s)
Crops, Agricultural/physiology , Imaging, Three-Dimensional , Models, Biological , Phosphorus/metabolism , Plant Roots/anatomy & histology , Plant Roots/physiology , Biomass , Crops, Agricultural/drug effects , Crops, Agricultural/growth & development , Culture Media/chemistry , Phosphorus/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Quantitative Trait, Heritable , Glycine max/drug effects , Glycine max/growth & development , Glycine max/physiology , Zea mays/drug effects , Zea mays/growth & development , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL