Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 283: 114701, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34606948

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xuanfei Baidu Decoction (XFBD), one of the "three medicines and three prescriptions" for the clinically effective treatment of COVID-19 in China, plays an important role in the treatment of mild and/or common patients with dampness-toxin obstructing lung syndrome. AIM OF THE STUDY: The present work aims to elucidate the protective effects and the possible mechanism of XFBD against the acute inflammation and pulmonary fibrosis. METHODS: We use TGF-ß1 induced fibroblast activation model and LPS/IL-4 induced macrophage inflammation model as in vitro cell models. The mice model of lung fibrosis was induced by BLM via endotracheal drip, and then XFBD (4.6 g/kg, 9.2 g/kg) were administered orally respectively. The efficacy and molecular mechanisms in the presence or absence of XFBD were investigated. RESULTS: The results proved that XFBD can effectively inhibit fibroblast collagen deposition, down-regulate the level of α-SMA and inhibit the migration of fibroblasts. IL-4 induced macrophage polarization was also inhibited and the secretions of the inflammatory factors including IL6, iNOS were down-regulated. In vivo experiments, the results proved that XFBD improved the weight loss and survival rate of the mice. The XFBD high-dose administration group had a significant effect in inhibiting collagen deposition and the expression of α-SMA in the lungs of mice. XFBD can reduce bleomycin-induced pulmonary fibrosis by inhibiting IL-6/STAT3 activation and related macrophage infiltration. CONCLUSIONS: Xuanfei Baidu Decoction protects against macrophages induced inflammation and pulmonary fibrosis via inhibiting IL-6/STAT3 signaling pathway.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Inflammation/drug therapy , Macrophages/drug effects , SARS-CoV-2 , Signal Transduction/drug effects , Animals , Cell Survival/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Gene Regulatory Networks , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Phytotherapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , RAW 264.7 Cells , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
2.
J Ethnopharmacol ; 278: 114336, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34139282

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Viticis fructus (VF) has been widely used in alleviating the swelling and pain, owning to its pharmacologically active components including agnuside, 10-O-vanilloylaucubin, luteolin and casticin. AIM OF THE STUDY: The pharmacokinetic profiles of the absorbed components from aqueous and ethanolic extracts of VF in rat plasma were performed, and explored the molecular mechanisms of absorbed components via network pharmacology. MATERIALS AND METHODS: Ultra-performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS) was employed to identify the absorbed components from rat plasma. Liquid-liquid extraction with ethyl acetate was used to purify the plasma samples. Plasma pharmacokinetics parameters of the components absorbed were analyzed after oral administration of both extracts. Network pharmacology was used to predict the biological functions and potential signaling pathways of VF. The anti-cancer effects of VF extract and absorbed components have been confirmed by in vitro experiments. RESULTS: The method was very sensitive with lower limit of quantification (LLOQ) of 1.0, 2.5, 0.2 and 0.5 ng/mL for agnuside, 10-O-vanilloylaucubin, luteolin and casticin, respectively. With the exception of 10-O-vanilloylaucubin which was not detected in the ethanolic extract of VF, all other components were detected in both extracts in plasma. The pharmacokinetic parameters of the four components from rat plasma were significantly different between the two extracts. According to the results of network pharmacology, the absorption components of VF are enriched in 32 key pathways, and 15 pathways are related to cancer. Ultimately, the anti-cancer effects, as well as the signaling pathways of VF ethanolic extract and absorbed components were verified by in vitro experiments. CONCLUSION: The optimized, sensitive and validated UHPLC-MS/MS method was successfully applied for the plasma pharmacokinetics comparison analysis of the two VF extracts. The combination of network pharmacology and pharmacokinetics provides a useful method to elucidate the biological effects and molecular mechanism of the absorbed components of VF.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Fruit/chemistry , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/pharmacokinetics , Vitex/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Cell Proliferation , Cell Survival , Humans , Male , Plant Extracts/chemistry , Prostatic Neoplasms/drug therapy , Rats , Rats, Sprague-Dawley , Sensitivity and Specificity
3.
Phytomedicine ; 75: 153246, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32510336

ABSTRACT

BACKGROUND: It is of utmost significance to choose the bioactive components as quality markers for ensuring the effectiveness of traditional Chinese medicine (TCM). Nonetheless, some markers are able to assess effectively the quality of TCM without considering the pharmacological mechanisms and intrinsic chemical complexities. OBJECTIVE: This underscores the need to discover new and efficient markers which can assess both quality and mechanism of action. Herein, a strategy of bioactive-chemical quality marker combination was proposed to improve the level of the quality control of TCM by metabolomics coupled with chemometrics. METHODS: A four-step plan was followed. Firstly, acquisition of metabolic features and component characterization of different batches of pollen of Typha orientalis C.Presl were performed using UHPLC-Q-TOF/MS. Secondly, the direct inhibitory effects of pollen of T. orientalis on thrombin was assessed by using chromogenic substrate method together with HPLC. Thereafter, bioactive-chemical marker combination associated with anti-thrombin segregation was screened using supervised classifiers. Finally, quantitative assay and prediction-model of selected markers were established for guarantying the quality of pollen of T. orientalis. RESULTS: A total of 22 compounds were annotated based on comparison with previous work from pollen of T. orientalis by UHPLC-Q-TOF/MS. Citric acid and linolenic acid inhibited the thrombin activity with IC50 values, 0.52 ± 0.02 and 0.51 ± 0.02 mg/mL, respectively. A bioactive-chemical marker combination including citric acid, linolenic acid, typhaneoside, and isorhamnetin-3-O-neohesperidoside were discovered and selected as quality markers for evaluation of pollen of T. orientalis according to their capacity for inhibiting thrombin. CONCLUSION: The thrombin-based discovery strategy of bioactive-chemical marker combination was a powerful tool for screening the quality markers for evaluation of pollen of T. orientalis.


Subject(s)
Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/pharmacology , Pollen/chemistry , Thrombin/antagonists & inhibitors , Typhaceae/chemistry , Biomarkers/analysis , Biomarkers, Pharmacological/analysis , Chromatography, High Pressure Liquid/methods , Flavonols/analysis , Glycosides/analysis , Medicine, Chinese Traditional/standards , Metabolomics/methods , Quality Control , Tandem Mass Spectrometry
4.
J Ethnopharmacol ; 260: 113044, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32535242

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: San-Ye-Tang-Zhi-Qing formula (SYTZQ) is an effective prescription for the treatment of pre-diabetes disorders of glycolipid metabolism in type 2 diabetes mellitus (T2DM). It consists of five Chinese herbs including Mori Folium, Nelumbinis Folium, Crataegi Folium, Salviae Miltiorrhizae Radix et Rhizoma and Paeoniae Radix Rubra. AIM OF THE STUDY: This study was aimed to reveal the pharmacological mechanism of pharmacokinetic target components of SYTZQ for the treatment of T2DM. MATERIALS AND METHODS: A rapid, precise and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to quantify simultaneously nuciferin, vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, paeoniflorin and rosmarinic acid in rat plasma after oral administration of SYTZQ. The network pharmacology was used to analyze the effect of the compounds absorbed into the blood of SYTZQ on T2DM. The effects of paeoniflorin, nuciferine and rosmarinic acid on adipogenic differentiation were validated in vitro experiments. RESULTS: The separation was performed on an ACQUITY UHPLC HSS T3 column (2.1 mm × 100 mm, 1.7 µm) using acetonitrile and 0.1% (v/v) formic acid in water as the mobile phase in gradient elution. The calibration curves of five analytes showed good linearity (r ≥ 0.9991) with the lower limits of quantification (LLOQ) between 0.3 and 5.0 ng/mL. The recoveries and matrix effects of five analytes ranged from 81.1% to 113%. The RSDs of inter-day and intra-day precision were all within 13.7%. The validated method was successfully applied to the pharmacokinetic study of five ingredients after oral administration of SYTZQ to rat. 39 major targets and 22 candidate pathways of five compounds absorbed into the blood of rats after administration of SYTZQ were identified and successfully constructed a compound-target-disease-pathway network. It was confirmed that paeniforin, nuciferine and rosmarinic acid could decrease the adipogenicity differentiation in vitro experiments. CONCLUSIONS: The pharmacokinetic parameters indicated that the five components (nuciferin, vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, paeoniflorin and rosmarinic acid) were absorbed and eliminated quickly in vivo. These five absorbed components were associated with 22 pathways, including insulin resistance, regulation of lipolysis in adipocytes, PI3k/AKT-, TNF-, cAMP- and cGMP-PKG-signaling pathway. Paeoniflorin, nuciferine and rosmarinic acid have the effect of inhibiting adipocyte differentiation. This study could provide more reference for quality control, and provide a firm basis for evaluating the clinical efficiency of SYTZQ.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/pharmacokinetics , Hypoglycemic Agents/pharmacokinetics , Systems Biology , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Administration, Oral , Animals , Cells, Cultured , Chromatography, High Pressure Liquid , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Drugs, Chinese Herbal/administration & dosage , Energy Metabolism/drug effects , Female , Gastrointestinal Absorption , Gene Regulatory Networks , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/blood , Male , Metabolomics , Mice, Inbred C57BL , Protein Interaction Maps , Rats, Sprague-Dawley , Signal Transduction , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL