Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Clin Biochem ; 125: 110735, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401771

ABSTRACT

BACKGROUND: Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), also known as Glutaric Aciduria Type II, is an exceptionally rare autosomal recessive genetic disorder that disrupts the metabolism of fatty acids, amino acids, and choline. It presents with a wide range of clinical manifestations, from severe neonatal-onset forms to milder late-onset cases, with symptoms including metabolic disturbances and muscle weakness. Jordan's anomaly is a distinctive morphological feature found in peripheral blood white cells and is typically associated with Neutral Lipid Storage Disease (NLSD). CASE REPORT: In our case report, the patient initially presented with symptoms of vomiting, abdominal pain, and altered consciousness. The presence of white cell Jordan's anomaly was detected in the blood smear. Subsequent serum tests revealed elevated levels of transaminases, creatine kinase, uric acid, and multiple acylcarnitines, while blood glucose and free carnitine levels were notably reduced. High-throughput sequencing confirmed heterozygous pathogenic variants in the electron-transferring flavoprotein dehydrogenase (ETFDH) gene, leading to the conclusive diagnosis of MADD. Following a three-month treatment regimen involving high-dose vitamin B2, coenzyme Q10, and other supportive interventions, the patient exhibited significant clinical improvement, ultimately resulting in discharge. CONCLUSION: The identification of Jordan's anomaly in a pediatric patient with late-onset MADD sheds light on its broader implications within the realm of lipid storage myopathies. The significance of this finding extends beyond its conventional association with NLSD, challenging the notion of its exclusivity. This novel observation serves as a compelling reminder of the diagnostic significance this morphological abnormality holds, potentially revolutionizing diagnostic practices within the field.


Subject(s)
Ichthyosiform Erythroderma, Congenital , Lipid Metabolism, Inborn Errors , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Muscular Diseases , Infant, Newborn , Humans , Child , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Jordan , Amino Acids , Lipids , Mutation , Acyl-CoA Dehydrogenase/genetics
2.
Sci Total Environ ; 904: 165837, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37517732

ABSTRACT

To date, studies on the effect of sewage disturbances on treatment facilities were based on fixed-length flow variations, which are incapable of imitating the actual dynamic flow characteristics of municipal sewage. Here, an innovative dynamic influent disturbance control system is established in this study and applied in a novel denitrifying phosphorus removal (anaerobic anoxic oxic-biological contact oxidation, AAO-BCO) system to simulate seasonal and diurnal sewage fluctuations in laboratory-scale experiments. The results showed that, under sinusoidal influent flow perturbation, the effluent pollutant content followed a relatively gentle sinusoidal trend and did not always result in desired level of pollutant removal. The ability of the system to cope with sinusoidal flow variations was susceptible to the amplitude of diurnal sewage fluctuation, while stronger tolerance capacity was observed to seasonal and momentary increase in wastewater flowrate. There was also a discrepancy in the system buffering capacity towards various pollutants removal (COD > TIN > PO43-), which may be attributed to wide fluctuations in PO43-/NO3- and different decrease in metabolic activity of denitrifying phosphorus removal (DPR) sludge caused by extreme hydraulic retention times. To improve the robustness and stability of the DPR system, a regulating strategy was proposed to alleviate the biomass reduction and uncoordinated PO43-/NO3-.


Subject(s)
Environmental Pollutants , Sewage , Waste Disposal, Fluid/methods , Phosphorus , Bioreactors , Nitrogen/analysis
3.
J Glaucoma ; 32(7): 585-592, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37055937

ABSTRACT

PRCIS: Lamina cribrosa (LC) thinning (thickness of ≤128.00 µm) helps to distinguish open angle glaucoma from high myopia, which was associated with the presence of microvasculature dropout and elevated intraocular pressure. PURPOSE: The purpose of this study was to analyze the factors associated with LC thickness in highly myopic eyes with and without open angle glaucoma. METHODS: In total, 240 highly myopic eyes with γ-zones (194 eyes without and 46 eyes with open angle glaucoma) were examined, and the LC center, externally oblique border, an abrupt change of scleral curvature (scleral step), deep layer microvasculature dropout and global retinal nerve fiber layer thickness were investigated on optical coherence tomography and optical coherence tomography angiography. RESULTS: LC were thinner in highly myopic open angle glaucoma compared with high myopia alone (107.76±9.86 vs. 137.07±18.51 µm, P <0.001), which was associated with deep layer microvasculature dropout and elevated intraocular pressure. The areas under the receiver operating characteristic curve for detecting open angle glaucoma from the LC thickness was 0.964, which was statistically higher ( P <0.05) than from the global retinal nerve fiber layer thickness (0.921) and vertical cup-to-disc ratio (0.902). A LC thickness cutoff value of 128 µm provided 100% sensitivity for detecting open angle glaucoma with 84% specificity. CONCLUSIONS: Highly myopic eyes with open angle glaucoma appear to have a thinner LC, which was associated with elevated intraocular pressure and deep layer microvasculature dropout. LC thinning (≤128.00 µm) helps distinguish open angle glaucoma from high myopia with an abnormal retinal nerve fiber layer thickness distribution and unclear shallow disc cupping.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Myopia , Optic Disk , Humans , Glaucoma, Open-Angle/diagnosis , Glaucoma, Open-Angle/complications , Optic Disk/blood supply , Intraocular Pressure , Glaucoma/complications , Myopia/complications , Myopia/diagnosis , Tomography, Optical Coherence/methods
4.
Fitoterapia ; 162: 105288, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058473

ABSTRACT

A new pentacyclic triterpenoid, 2-hydroxy-1-ene-hydroxyhopanone (19), and a new benzoxepin-5-one, 3-(4-methyl-3-penten-1-yl)-6-hydroxy-9-methoxy-2H-1-benzoxepin-5-one (25), along with 26 known compounds (1-18, 20-24, 26-28), were isolated from the roots of Arnebia euchroma (Royle) Johnst. The structures of the new compounds were elucidated by extensive spectroscopic analyses. The absolute configurations of shikonofurans 9-13 were determined by quantum chemical ECD calculations and CD spectra comparison for the first time. Pharmacological study revealed that naphthoquinones 1-5, 7, and 8 had obvious cytotoxicity toward human lung adenocarcinoma A549 cell line. Meanwhile, the hypoglycemic and lipid-lowering effects of isolated compounds were assessed by checking their inhibitory effects on key enzymes regulating glucose and lipid metabolism. Results showed that compounds 1, 3, 5, 6, 8, 18, and 19 could inhibit the activity of ATP-citrate lyase (ACL); compound 7 could inhibit the activity of acetyl-CoA carboxylase (ACC1); while compounds 8 and 19 showed inhibitory effects on protein tyrosine phosphatase 1B (PTP1B). Among them, the naphthoquinone 6, steroid 18, and triterpenoid 19 showed moderate inhibitory effects on ACL and PTP1B, but didn't exhibit obvious cytotoxicity. This study demonstrated that compounds 6, 18, and 19 show great promising for the development of new agents for the treatment of metabolic diseases.


Subject(s)
Benzoxepins , Boraginaceae , Naphthoquinones , Triterpenes , Acetyl-CoA Carboxylase/metabolism , Adenosine Triphosphate/metabolism , Benzoxepins/metabolism , Boraginaceae/chemistry , Glucose/metabolism , Humans , Hypoglycemic Agents/pharmacology , Lipids , Molecular Structure , Naphthoquinones/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Triterpenes/metabolism
5.
Front Nutr ; 9: 828946, 2022.
Article in English | MEDLINE | ID: mdl-35662933

ABSTRACT

Arginine is a natural preservative; however, its effects on the storage of different cultivars of pomegranates have not been investigated extensively. Therefore, the fruit quality of soft-seed Tunisia and hard-seed Yudazi pomegranates was investigated after treatment with arginine at four concentrations during cold storage for 80 days. Pomegranates treated with 1.0 mM arginine exhibited a relatively lower loss of vitamin C, soluble solid, total phenol, and anthocyanin contents in arils, together with a better fruit appearance. Combined with principal component analysis (PCA), the storage life of fruits treated with 1.0 mM arginine showed a higher correlation with antioxidant enzyme activity (e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)) during the first 40 days of cold storage, whereas after 40 days of cold storage, storage life was more dependent on the integrity of the cell membrane affected by malondialdehyde (MDA) content, electrolyte leakage (EL), and hydrogen peroxide (H2O2) accumulation. Arginine treatment contributed significantly to the appearance and inner quality of the hard-seed pomegranate cv. Yudazi fruit during cold storage compared to those of soft-seed Tunisia. Taken together, arginine application combined with cold storage enhanced the nutraceutical properties and marketability of pomegranate fruits.

6.
Bioresour Technol ; 357: 127352, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35605771

ABSTRACT

Starvation conditions were inevitably encountered by biological wastewater treatment systems. Four anaerobic starvation periods (5, 10, 16 and 20 days) were conducted to investigate the response mechanism of denitrifying phosphate-accumulating organisms (DPAOs) in order to dissect denitrifying phosphorus removal (DPR) decay processes. The denitrifying phosphorus removal performance suffered with the decay rate of 0.162 ± 0.022 d-1 during 20-day starved duration. Metabolic activity decay was responsible 93.20 ± 0.11% for the damaged DPR performance, while biomass decay contributed to 6.79 ± 0.68%. The genus Dechloromonas affiliated to DPAOs exerted stronger survival adaptability to starvation with the abundance increasing from 1.98% to 3.15%, depended upon the endogenous consumption of intracellular polymers. In view of PHA-driven DPR mechanism of DPAOs, the metabolic activity was restricted by the depletion of available PHA. These results revealed the poorer stability but preponderant recovery of DPR system encountering with starvation.


Subject(s)
Denitrification , Phosphorus , Bioreactors , Nitrogen , Phosphates , Phosphorus/metabolism , Sewage , Waste Disposal, Fluid
7.
Sci Total Environ ; 793: 148581, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34328985

ABSTRACT

Denitrifying phosphorus removal (DPR) technology is one of the most effective approach to simultaneously realize nitrogen (N) and phosphorus (P) removal from low COD/N ratio wastewater. Identifying the interaction of denitrifying phosphate-accumulating organisms (DPAOs), denitrifying glycogen organisms (DGAOs) and denitrifying ordinary heterotrophic organisms (DOHOs) is critical for optimizing denitrification and anoxic P uptake efficiency in DPR processes. In this study, a novel DPR system of anaerobic anoxic oxic - biological contact oxidation (AAO-BCO) was employed to dispose actual sewage with various influent COD/N ratios (3.5-6.7). High efficiency of TIN (76.5%) and PO43--P (94.4%) removal was observed when COD/N ratio was between 4.4 and 5.9. At the COD/N ratio of 5.7 ± 0.2, prominent DPR performance was verified by the superior DPR efficiency (88.7%) and anoxic phosphorus uptake capacity (PUADPAOs/ΔTIN = 1.84 mg/mg), which was further proved by the preponderance of DPAOs in C, N and P removal pathways. GAOs have a competitive advantage over PAOs for COD utilization at low COD/N ratio of 3.7 ± 0.2, which further limited the N removal efficiency. High proportion of N removal via DOHOs (21.2%) at the COD/N ratio of 6.5 ± 0.2 restrained the DPR performance, which should be attributed to the outcompete of DOHOs for NO3-. The nutrient removal mechanisms were explicated by stoichiometric calculation methodology to quantify the contribution of diverse functional microorganisms, contributing to improving the robustness of AAO-BCO system when facing the fluctuation of influent carbon source concentration.


Subject(s)
Denitrification , Sewage , Bioreactors , Nitrogen , Nutrients , Phosphorus , Waste Disposal, Fluid
8.
J Med Internet Res ; 23(3): e26997, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33556034

ABSTRACT

BACKGROUND: Artificial intelligence (AI) methods can potentially be used to relieve the pressure that the COVID-19 pandemic has exerted on public health. In cases of medical resource shortages caused by the pandemic, changes in people's preferences for AI clinicians and traditional clinicians are worth exploring. OBJECTIVE: We aimed to quantify and compare people's preferences for AI clinicians and traditional clinicians before and during the COVID-19 pandemic, and to assess whether people's preferences were affected by the pressure of pandemic. METHODS: We used the propensity score matching method to match two different groups of respondents with similar demographic characteristics. Respondents were recruited in 2017 and 2020. A total of 2048 respondents (2017: n=1520; 2020: n=528) completed the questionnaire and were included in the analysis. Multinomial logit models and latent class models were used to assess people's preferences for different diagnosis methods. RESULTS: In total, 84.7% (1115/1317) of respondents in the 2017 group and 91.3% (482/528) of respondents in the 2020 group were confident that AI diagnosis methods would outperform human clinician diagnosis methods in the future. Both groups of matched respondents believed that the most important attribute of diagnosis was accuracy, and they preferred to receive combined diagnoses from both AI and human clinicians (2017: odds ratio [OR] 1.645, 95% CI 1.535-1.763; P<.001; 2020: OR 1.513, 95% CI 1.413-1.621; P<.001; reference: clinician diagnoses). The latent class model identified three classes with different attribute priorities. In class 1, preferences for combined diagnoses and accuracy remained constant in 2017 and 2020, and high accuracy (eg, 100% accuracy in 2017: OR 1.357, 95% CI 1.164-1.581) was preferred. In class 2, the matched data from 2017 were similar to those from 2020; combined diagnoses from both AI and human clinicians (2017: OR 1.204, 95% CI 1.039-1.394; P=.011; 2020: OR 2.009, 95% CI 1.826-2.211; P<.001; reference: clinician diagnoses) and an outpatient waiting time of 20 minutes (2017: OR 1.349, 95% CI 1.065-1.708; P<.001; 2020: OR 1.488, 95% CI 1.287-1.721; P<.001; reference: 0 minutes) were consistently preferred. In class 3, the respondents in the 2017 and 2020 groups preferred different diagnosis methods; respondents in the 2017 group preferred clinician diagnoses, whereas respondents in the 2020 group preferred AI diagnoses. In the latent class, which was stratified according to sex, all male and female respondents in the 2017 and 2020 groups believed that accuracy was the most important attribute of diagnosis. CONCLUSIONS: Individuals' preferences for receiving clinical diagnoses from AI and human clinicians were generally unaffected by the pandemic. Respondents believed that accuracy and expense were the most important attributes of diagnosis. These findings can be used to guide policies that are relevant to the development of AI-based health care.


Subject(s)
Artificial Intelligence , COVID-19/epidemiology , Adult , Female , Humans , Male , Pandemics , Propensity Score , Research Design , SARS-CoV-2/isolation & purification
9.
Ecotoxicol Environ Saf ; 162: 51-58, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-29960914

ABSTRACT

The effects of iron plaque formation on chromium (Cr) uptake and accumulation by rice seedlings (Oryza sativa L.) were assessed using hydroponic and soil experiments, where each 3 levels of Fe supplementation were added to Hoagland solution (0, 30, and 100 mg Fe2+ L-1) and a typical paddy soil (0, 1, and 2 g Fe2+ kg-1). For each treatment, rice seedlings were exposed to different levels of Cr as chromate at 0, 0.5, 2, 5, 10, and 20 mg L-1 in solution or 300 mg kg-1 in soil. Low levels of Cr supply (0.5, 2, and 5 mg L-1) promoted root biomass, while high levels (10 and 20 mg L-1) decreased root and shoot biomass and undermined the density and integrity of iron plaque. Iron supply significantly increased the proportion of Cr in iron plaque, but decreased that in rice plants. The results of hydroponic experiment showed that iron plaque formed with Fe supply at 100 mg L-1 markedly reduced Cr accumulation in shoots of rice seedlings when exposure to 10 and 20 mg L-1 Cr. The soil culture experiment also demonstrated that exogenous Fe addition significantly decreased Cr concentration in leaf and stem of rice seedlings. These results suggested that iron plaque with appropriate amount was effective to reduce the uptake and accumulation of Cr in rice plants, which have strong implication for taking measures to regulate Cr accumulation in rice grains.


Subject(s)
Chromium/metabolism , Iron/pharmacology , Oryza/metabolism , Soil Pollutants/metabolism , Biological Transport , Biomass , Hydroponics , Oryza/drug effects , Oryza/growth & development , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Stems/drug effects , Plant Stems/metabolism , Seedlings/drug effects , Seedlings/metabolism , Soil
10.
Environ Sci Pollut Res Int ; 24(27): 21700-21709, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28762046

ABSTRACT

The objectives of this research were to study the effects of Na2SiO3 application on the uptake, translocation, and accumulation of Pb in rice and to investigate the mechanisms of Pb immobilization by Na2SiO3 in paddy rice soils and rice plants. Pot experiments were conducted using a Cd-Pb-Zn-polluted soil and Oryza sativa L. ssp. indica cv. Donglian 5. L3-edge X-ray absorption spectroscopy was used to identify Pb species in soils and roots. The results showed that the application of Na2SiO3 increased soil pH and available soil Si but decreased DTPA-extractable Pb in the soil. High dose of Na2SiO3 (12.5 g/kg) reduced the Pb level in brown rice as it inhibited Pb transfer from soil to rice grains, especially Pb transfer from the root to the stem. The Pb X-ray absorption near-edge spectroscopic analysis revealed that application of high dose of Na2SiO3 increased Pb-ferrihydrite and PbSiO3 precipitates in the soil and in the root while it reduced Pb-humic acids (Pb-HAs) in the soil and Pb-pectin in the root. The decrease in Pb availability in the soil can be partly attributed to increase the precipitation of PbSiO3 and the association of Pb2+ with Fe oxides in the soil. The inhibition of the root-to-stem translocation of Pb was partially due to the precipitation of PbSiO3 on the root surfaces or inside the roots.


Subject(s)
Environmental Pollution , Lead/metabolism , Oryza/metabolism , Silicates/pharmacology , Soil Pollutants/metabolism , Oryza/chemistry , Oryza/drug effects , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/pharmacology
11.
Plant Physiol Biochem ; 78: 53-62, 2014 May.
Article in English | MEDLINE | ID: mdl-24636907

ABSTRACT

Phosphorus (P) is a critical macronutrient required for numerous functions in plants and is one of the limiting factors for plant growth. Phosphate availability has a strong effect on root system architecture. Expansins are encoded by a superfamily of genes that are organized into four families, and growing evidence has demonstrated that expansins are involved in almost all aspects of plant development, especially root development. In the current study, we demonstrate that expansins may be involved in increasing phosphorus availability by regulating the growth and development of plant roots. Multiple expansins (five α- and nine ß-expansin genes) were up- or down-regulated in response to phosphorus and showed different expression patterns in wheat. Meanwhile, the expression level of TaEXPB23 was up-regulated at excess-P condition, suggesting the involvement of TaEXPB23 in phosphorus adaptability. Overexpression of the TaEXPB23 resulted in improved phenotypes, particularly improved root system architecture, as indicated by the increased number of lateral roots in transgenic tobacco plants under excess-P and low-P conditions. Thus, these transgenic plants maintained better photosynthetic gas exchange ability than the control under both P-sufficient and P-deficient conditions.


Subject(s)
Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Phosphorus/pharmacology , Plant Proteins/genetics , Triticum/genetics , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Biomass , Dose-Response Relationship, Drug , Multigene Family , Phosphorus/metabolism , Photosynthesis/drug effects , Photosynthesis/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Triticum/growth & development , Triticum/metabolism
12.
Beilstein J Nanotechnol ; 3: 579-85, 2012.
Article in English | MEDLINE | ID: mdl-23019554

ABSTRACT

We investigate the ability of a focused helium ion beam to selectively modify and mill materials. The sub nanometer probe size of the helium ion microscope used provides lateral control not previously available for helium ion irradiation experiments. At high incidence angles the helium ions were found to remove surface material from a silicon lamella leaving the subsurface structure intact for further analysis. Surface roughness and contaminants were both reduced by the irradiation process. Fabrication is also realized with a high level of patterning acuity. Implantation of helium beneath the surface of the sample is visualized in cross section allowing direct observation of the extended effects of high dose irradiation. The effect of the irradiation on the crystal structure of the material is presented. Applications of the sample modification process are presented and further prospects discussed.

13.
Zhonghua Er Ke Za Zhi ; 48(3): 199-203, 2010 Mar.
Article in Chinese | MEDLINE | ID: mdl-20426956

ABSTRACT

OBJECTIVE: To observe the effects of hyperbaric oxygen (HBO) on synaptic ultrastructure and the synaptophysin expression (p38) in hippocampal CA3 after hypoxia-ischemic brain damage (HIBD) in neonatal rats. METHODS: The rat model of HIBD was made by the method of Bjelke and divided randomly into two groups (n = 10)--HIBD group and HBO-treated HIBD group. Another 20 rats underwent sham-operation and were also divided randomly into HBO-treated control group and the control group. After 24 h of the operation, the rats of the HBO-treated groups received HBO (2ATA, 1 h/d) for 14 days. When rats were 4 weeks old, the learning-memory ability of rats in every group was evaluated through water-maze test. Their hippocampal ultrastructure was observed with electron microscope and the p38 expression was detected immunohistochemically. RESULTS: Compared with the control group [(10.6 +/- 3.4) times], the water-maze learning ability of the rats in HIBD group [(15.5 +/- 4.9) times] was significantly decreased (P < 0.01), while the learning-memory ability of the HBO-treated HIBD group [(11.3 +/- 2.6) times] was significantly improved. There was no significant difference in the water-maze test between the HBO-treated HIBD group and the control group (P > 0.05). Compared with the control group, the ultrastructure of pyramidal neuron of hippocampal CA3 was distorted in HIBD group under the electron microscope. Compared with that in HBO-treated HIBD group (0.77 +/- 0.17, 0.67 +/- 0.16, 0.46 +/- 0.13, 0.86 +/- 0.14) and the control group (0.82 +/- 0.16, 0.70 +/- 0.16, 0.53 +/- 0.15, 0.91 +/- 0.17), the corrected optical densities (COD) of immunoreactive products of the hippocampal CA3 p38 were significantly decreased in HIBD group (0.41 +/- 0.19, 0.21 +/- 0.11, 0.08 +/- 0.03, 0.38 +/- 0.16) (P < 0.01). There was no significant difference in either ultrastructure or immunohistochemically reactive COD of p38 between the HBO-treated HIBD group and the control group (P > 0.05). CONCLUSION: Underlying the induction of synaptic plasticity and reducing the ultrastructural damage may be involved in the mechanism of HBO in the brain rehabilitation in perinatal brain damage with hypoxia-ischemia.


Subject(s)
Hippocampus/metabolism , Hippocampus/pathology , Hypoxia-Ischemia, Brain/pathology , Synapses/ultrastructure , Synaptophysin/metabolism , Animals , Animals, Newborn , Female , Hyperbaric Oxygenation , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/therapy , Pregnancy , Rats , Rats, Sprague-Dawley , Synapses/metabolism
14.
Zhongguo Dang Dai Er Ke Za Zhi ; 11(5): 380-3, 2009 May.
Article in Chinese | MEDLINE | ID: mdl-19470263

ABSTRACT

OBJECTIVE: The application and the efficacy of hyperbaric oxygen (HBO) in hypoxic-ischemic brain damage (HIBD) remain controversial. This study aimed to explore the effects of HBO on brain functional outcome and possible repair mechanisms in neonatal rats with intrauterine HIBD in aspects of the number of survived neurons and the central nervous electrophysiological conduction velocity. METHODS: A rat model of intrauterine HIBD was prepared. Subjects were divided into four groups at random: HIBD, HBO-treated HIBD group, normal control and HBO-treated normal control. After 24 hrs of the operation, the two HBO-treated groups received HBO treatment (0.02 MPa, 1 hr/d) for 14 days. When the rats were 4 weeks old, the electrophysiological changes in the central nervous system (CNS) were observed by brainstem auditory evoked potential (BAEP) for assessing brain function. Hematoxylin and eosin (HE) staining and Nissl's stainting were employed to observe the pathological change and the number of neurons in the hippocampus. RESULTS: The peak latency of waves II and IV and the interpeak latency of waves I-IV in the HBO-treated HIBD group were shortened compared with those in the untreated HIBD group (P< 0.05). HE staining displayed that the pathological injuries in the hippocampus were alleviated in the HBO-treated HIBD group when compared with the untreated HIBD group. Nissl,s staining showed that survived neurons in the HBO-treated HIBD group were more than the untreated HIBD group (P< 0.05). The HBO-treated control group showed increased survived neurons compared with the untreated control group (P< 0.05). CONCLUSIONS: Early HBO treatment might improve brain functional outcome through increasing synaptic transmission efficiency, improving central nervous electrophysiological conduction velocity and reducing neuron death in neonatal rats with intrauterine HIBD.


Subject(s)
Hyperbaric Oxygenation , Hypoxia-Ischemia, Brain/therapy , Animals , Animals, Newborn , Brain/pathology , Evoked Potentials, Auditory, Brain Stem , Female , Hypoxia-Ischemia, Brain/physiopathology , Rats , Rats, Sprague-Dawley , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL