Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Chem Biol Interact ; 395: 110997, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38588969

ABSTRACT

It is generally accepted that low vitamin D (VD) levels are associated with a high prevalence factor for Inflammatory bowel disease (IBD). IBD patients have observed higher levels of lipopolysaccharide (LPS), ALT, and AST than healthy people. Gut-derived LPS causes inflammatory injury in the liver and kidney. The VD-metabolizing mechanism is involved in the liver and kidney, which means IBD might impact VD metabolism. However, whether IBD affects VD metabolism has not been studied. In vitro LPS resulted in decreased CYP2R1 in liver cells as well as decreased CYP27B1 and increased CYP24A1 in kidney cells, revealing that LPS changed the activities of several hydroxylases. Mice with acute colitis had an increased LPS in serum and liver with mild hepatic injuries, while mice with chronic colitis had a significant elevation of LPS in serum, liver, and kidney with hepatorenal injuries. Thus, the liver hydroxylase for VD metabolism would be the first to be affected in IBD. Consequently, serum 25-hydroxyvitamin D declined dramatically with a significant elevation of 24,25-dihydroxyvitamin D and 1,24,25-trihydroxyvitamin D. Unchanged serum levels of 1,25-dihydroxyvitamin D might be the result of other factors in vivo. In acute colitis, a small dosage (4 IU/day) of cholecalciferol could protect the colon, decrease the serum level of LPS, and finally increase serum 25-hydroxyvitamin D. However, this improvement of cholecalciferol was fading in chronic colitis. These results suggested that VD supplementations for preventing and curing IBD in the clinic should consider hepatorenal hydroxylases and be employed as soon as possible for a better outcome.


Subject(s)
Colitis , Lipopolysaccharides , Liver , Vitamin D , Animals , Vitamin D/analogs & derivatives , Vitamin D/metabolism , Vitamin D/blood , Vitamin D/pharmacology , Colitis/metabolism , Colitis/chemically induced , Colitis/pathology , Colitis/drug therapy , Mice , Liver/metabolism , Liver/drug effects , Liver/pathology , Male , Humans , Mice, Inbred C57BL , Vitamin D3 24-Hydroxylase/metabolism , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Dextran Sulfate
2.
Phytomedicine ; 128: 155465, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471319

ABSTRACT

BACKGROUND: Liver fibrosis (LF) is a pathological process of the liver that threatens human health. Currently, effective treatments are still lacking. Esculin, a prominent constituent found in the Fraxinus rhynchophylla. (bark), Aesculus hippocastanum. (bark), and Cichorium intybus. (herb), has been shown to possess significant anti-inflammatory, antioxidant, and antibacterial properties. However, to date, there have been no studies investigating its potential efficacy in the treatment of LF. OBJECTIVE: The study aims to investigate the therapeutic effect of esculin on LF and elucidate its potential molecular mechanism. METHODS: Carbon tetrachloride (CCl4) was injected intraperitoneally to induce LF in mice, and transforming growth factor ß1 (TGF-ß1) was injected to induce LX-2 cells to investigate the improvement effect of esculin on LF. Kit, histopathological staining, immunohistochemistry (IHC), immunofluorescence (IF), polymerase chain reaction (PCR), and western blot (WB) were used to detect the expression of fiber markers and nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway in liver tissue and LX-2 cells. Finally, molecular docking, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) were used to verify the targeting between Nrf2 and esculin. RESULTS: Esculin significantly inhibited CCl4-induced hepatic fibrosis and inflammation in mice. This was evidenced by the improvement of liver function indexes, fibrosis indicators, and histopathology. Additionally, esculin treatment prominently reduced the levels of pro-inflammatory factors, oxidative stress, and liver Fe2+ in CCl4-induced mice. In vitro studies also showed that esculin treatment significantly inhibited TGF-ß1-induced LX-2 cell activation and decreased alpha-smooth muscle actin (α-SMA) and collagen I expression. Mechanism experiments proved that esculin can activate the Nrf2/GPX4 signaling pathway and inhibit liver ferroptosis. However, when LX-2 cells were treated with the Nrf2 inhibitor (ML385), the therapeutic effect of esculin significantly decreased. CONCLUSION: This study is the first to demonstrate that esculin is a potential natural active ingredient in the treatment of LF, which can inhibit the activation of hepatic stellate cells (HSC) and improve LF. Its therapeutic effect is related to the activation of the Nrf2/GPX4 signaling pathway.


Subject(s)
Carbon Tetrachloride , Esculin , Hepatic Stellate Cells , Liver Cirrhosis , Signal Transduction , Animals , Humans , Male , Mice , Cell Line , Esculin/pharmacology , Glutathione Peroxidase/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism
3.
Phytomedicine ; 101: 154070, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35523114

ABSTRACT

BACKGROUND: Asperuloside is a natural compound extracted from various herbs with several bioactivities. Its effects on anti-inflammation and anti-tumor indicated that asperuloside might prevent colorectal cancer developing from inflammatory bowel diseases (IBD). But there were few reports about the efficacy and mechanism of asperuloside on improving colorectal cancer. It has been reported that vitamin D receptor (VDR) could regulate the expression of SMAD3. In previous study, asperuloside could significantly improve the expression of VDR and reduced Smad3 mRNA in IEC-6 cell. PURPOSE: The present study was aimed to investigate the potential mechanism of asperuloside on inhibiting epithelial-mesenchymal transition (EMT) in colitis associated cancer. STUDY DESIGN: First, in LPS-injured IEC-6 cell, asperuloside inhibited phosphorylated p65 (p-p65) level, improved VDR expression and reduced Smad3 mRNA. Second, we wonder the relationship between VDR signaling and nucleus factor-kappaB (NF-κB) signaling during asperuloside on reducing Smad3 mRNA. And then, the effect of asperuloside on inhibiting EMT development through VDR/Smad3 was investigated. Finally, we testified the effect of asperuloside on protecting against colitis associated cancer (CAC) by inhibiting EMT development through VDR/Smad3. METHODS: Pyrrolidinedithiocarbamate ammonium (PDTC) was used for established NF-κB-inhibited IEC-6 cell. This cell was applied for investigating the relationship between NF-κB and VDR of asperuloside on inhibiting Smad3. VDR-inhibited cell was established by small interfering RNA (siRNA) of VDR and was employed to investigate the role of VDR for asperuloside on decreasing Smad3. Transforming growth factor ß1 (TGFß1) was used for inducing EMT/fibrosis in IEC-6 cell. TGFß1-stimulated cell was used for testifying the effect of asperuloside on inhibiting EMT development. AOM/DSS-induced CAC was established to investigate the effect of asperuloside on suppressing cancer development. RESULTS: Asperuloside inhibited the level of p-p65 which was up-regulated by LPS. Asperuloside could up-regulate VDR signaling and reduce Smad3 mRNA in NF-κB-knockdown IEC-6 cells. Asperuloside failed to reduce Smad3 mRNA due to VDR knockdown, which implied that asperuloside might down-regulate Smad3 mRNA dependently on activation of VDR signaling and independently on inhibiting NF-κB signaling. Asperuloside exhibited significant prevention of EMT development in TGFß1-induced IEC-6 cell (EMT cell) and mice CAC. Asperuloside reduced the transform of epithelial phenotype into motile mesenchymal phenotype in EMT cell along with decreasing levels of EMT markers by inhibiting Smad3 mRNA via activation of VDR. In mice with CAC, expression of VDR in colon was improved by asperuloside. Symptoms of colitis, tumor number and tumor size were significantly inhibited by asperuloside. Suppressed EMT development was determined by reduced α-SMA expression and decreased mRNAs of several EMT markers. CONCLUSION: Asperuloside might prevent CAC through inhibiting EMT development via regulation of VDR/Smad3 pathway.


Subject(s)
Colitis-Associated Neoplasms , Epithelial-Mesenchymal Transition , Animals , Cyclopentane Monoterpenes , Glucosides , Lipopolysaccharides/pharmacology , Mice , NF-kappa B/metabolism , Pyrans , RNA, Messenger , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Transforming Growth Factor beta1/metabolism
4.
Front Pharmacol ; 12: 714065, 2021.
Article in English | MEDLINE | ID: mdl-34650431

ABSTRACT

With the increasing incidence of ulcerative colitis (UC) in China, Chinese medicinal herbs or relatively active compounds are widely applied in treating UC. These medicines may be combined with other therapeutic agents such as vitamin D3. Nevertheless, the efficacy of these combinations for UC is unclear. Geniposide is an active component in many Chinese herbal medicines. It could ameliorate dextran sulfate sodium (DSS)-induced colitis in mice. This study was designed to determine the efficacy and mechanism of the single use and combination of geniposide and vitamin D3 on a mouse model of acute colitis. Data showed that a single administration of geniposide (2 mg/kg) or vitamin D3 (4 IU/day) could significantly improve the symptoms of UC and relieve colon damage. Geniposide and vitamin D could significantly decrease the levels of TNF-α and IL-6 in serum and colon, and increase the level of IL-10 in the colon. However, the combined treatment of geniposide (2 mg/kg) and vitamin D3 (4 IU/day) exerted less beneficial effects on UC in mice, indicating by less improvement of UC symptoms, colon damage, and inflammatory infiltration. The combination only downregulated the level of TNF-α in serum and IL-6 in the colon. Our data further demonstrated that geniposide could inhibit the activation of p38 MAPK and then restrict the vitamin D receptor signaling stimulated by vitamin D3. These results implied that the combination of geniposide and vitamin D3 might not be an ideal combined treatment for acute colitis, and the combination of vitamin D supplementary and geniposide (or herbal medicines rich in geniposide) need more evaluation before being applied to treat UC in clinic.

5.
Phytomedicine ; 83: 153489, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33571919

ABSTRACT

BACKGROUND: Patients with inflammatory bowel disease are at increased risks of developing ulcerative colitis-associated colorectal cancer (CAC). Vitexin can suppress the proliferation of colorectal carcinoma cells in vitro orin vivo. However, different from colorectal carcinoma, CAC is more consistent with the transformation from inflammation to cancer in clinical chronic IBD patients. Therefore, we aim to investigated that vitexin whether possess benefic effects on CAC mice. PURPOSE: We aimed to determine the beneficial effects of vitexin on CAC mice and reveal its underlying mechanism. METHODS: The mouse CAC model was induced by Azoxymethane and dextran sodium sulfate (AOM/DSS) and CAC mice were treated with vitexin. At the end of this study, inflammatory cytokines of IL-1ß, IL-6, TNF-α, IL-10 as well as nitric oxide (NO) were detected by kits after long-term treatment of vitexin. Pathological changes and macrophage polarization were determined by H&E and immunofluorescence in adjacent noncancerous tissue and carcinomatous tissue respectively of CAC mice. RESULTS: Our results showed that oral administration of vitexin could significantly improve the clinical signs and symptoms of chronic colitis, relieve colon damage, regulate colonic inflammatory cytokines, as well as suppress tumor incidence and tumor burden. Interesting, vitexin caused a significant increase in serum level of NO and a higher content of NO in tumor tissue. In addition, vitexin significantly decreased M1 phenotype macrophages in the adjacent noncancerous tissue, while markedly up-regulated M1 macrophage polarization in the tumor tissue in the colon of CAC mice. CONCLUSION: Vitexin can attenuate chronic colitis-associated carcinogenesis induced by AOM/DSS in mice and its protective effects are partly associated with its alternations in macrophage polarization in the inflammatory and tumor microenvironment .


Subject(s)
Apigenin/pharmacology , Colitis/pathology , Colorectal Neoplasms/prevention & control , Macrophages/drug effects , Animals , Anticarcinogenic Agents/pharmacology , Azoxymethane/toxicity , Carcinogenesis/drug effects , Colitis/chemically induced , Colorectal Neoplasms/etiology , Colorectal Neoplasms/pathology , Cytokines/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Inflammatory Bowel Diseases/pathology , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism
6.
Eur J Pharmacol ; 882: 173264, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32544504

ABSTRACT

Evidences showed that chronic stress (CS) can aggravate the situation of nonalcoholic fatty liver disease (NAFLD). Vitexin is one of the major components in hawthorn, which is widely used to reduce blood lipid. This study was aimed to explore the therapeutic effects and potential mechanisms of vitexin on chronic stress mice with high-fat diet (CSHFD). The results showed that 5-week vitexin administration (40 mg/kg, i.g.) could obviously reduce hepatic fat deposition, alleviate lipid metabolism, and inhibit liver inflammation in CSHFD mice. In addition, vitexin significantly reduced hepatic macrophage infiltration, obviously down-regulated the mRNA and protein expressions of hepatic SREBP-1c, FAS, ACC. Moreover, we also found that vitexin treatment could significantly inhibit the expressions of TLR4/NF-κB signaling in CSHFD mice. This results suggested that vitexin could ameliorate chronic stress combined with high-fat diet induced NAFLD, and its mechanisms is closely related to inhibit TLR4/NF-κB signaling and reduce fatty acid synthesis proteins.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Apigenin/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Apigenin/pharmacology , Cytokines/blood , Cytokines/immunology , Diet, High-Fat , Lipid Metabolism/drug effects , Liver/drug effects , Liver/immunology , Liver/pathology , Male , Mice, Inbred C57BL , NF-kappa B/immunology , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Stress, Physiological , Toll-Like Receptor 4/immunology
SELECTION OF CITATIONS
SEARCH DETAIL