Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Curr Mol Med ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855351

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a chronic inflammatory condition that affects the articular cartilage. Astragaloside IV (AS-IV) constitutes the primary active component of the Chinese herbal medicine Huangqi (Radix Astragali Mongolici). AS-IV demonstrates anti-inflammatory and anti-apoptotic attributes, exhibiting therapeutic potential across various inflammatory and apoptosis-related disorders. Nevertheless, its pharmaceutical effects in OA are yet to be fully defined. OBJECTIVES: This study aimed to investigate the protective impact of AS-IV on rat chondrocytes treated with IL-1ß and ascertain whether autophagy plays a role in this effect. METHODS: Chondrocytes were isolated and cultivated from the knee joints of neonatal SD mice. The study included the blank control group, the model group, and the AS-IV concentration gradient group (50, 100, 200 µmol/L) to intervene with chondrocytes. The MTT assay was employed to assess cell viability at varying culture periods, enabling the determination of suitable concentration and duration. Subsequently, chondrocytes were treated with the optimal AS-IV concentration and divided into three groups: the model group replicated IL-1ß-induced inflammatory chondrocyte injury, the AS-IV group received a co-culture of AS-IV and IL-1ß, and a blank control group was established. Changes in cell morphology and structure were observed using ghost pen cyclic peptide staining. ELISA was used to measure TNF-α and GAG levels in cell supernatants. RT-qPCR assessed p62 and LC3 mRNA expression, while Western Blot evaluated p62 and LC3Ⅱ/Ⅰ protein expression. RESULTS: AS-IV promoted chondrocyte proliferation and concurrently inhibited cell apoptosis. An optimal AS-IV dose of 200 µmol/L and a suitable reaction time of 48 h were identified. Ghost pen cyclic peptide staining indicated that the model group's cytoskeleton exhibited fusiform changes with reduced immunofluorescence intensity, as opposed to the blank control group. The AS-IV group displayed more polygonal cytoskeletal morphology with increased immunofluorescence intensity. AS-IV reduced TNF-α levels and elevated GAG levels in the culture supernatant. Additionally, AS-IV lowered p62 mRNA and protein expression while increasing LC3 mRNA expression in cultured chondrocytes. CONCLUSION: Our findings suggest that AS-IV mitigates inflammatory chondrocyte injury, safeguarding chondrocytes through a potential autophagy suppression mechanism. These results imply that AS-IV could offer preventive advantages for OA.

2.
Poult Sci ; 102(6): 102651, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37068353

ABSTRACT

This study was conducted to investigate the effects of different levels of palygorskite-based composite (PBC) on growth performance, antioxidant status, and meat quality of broilers. A total of 320 one-day-old mixed-sex Ross 308 broiler chicks were allocated to 1 of 5 groups with 8 replicates of 8 birds each, and given a basal diet supplemented with 0, 250, 500, 1,000, and 2,000 mg/kg PBC for a 42-day trial, respectively. PBC quadratically increased feed efficiency during the late and overall experimental periods (P < 0.05). Compared with the control group, 1,000 mg/kg PBC increased feed efficiency during the overall period (P < 0.05). PBC linearly increased serum total superoxide dismutase (T-SOD) activity at 21 d and glutathione peroxidase (GSH-Px) activity at both 21 d and 42 d (P < 0.05). Compared with the control group, PBC supplementation, regardless of its level, increased 21-day serum SOD activity (P < 0.05). The 21-day serum GSH-Px activity was increased by PBC when its level exceeded 250 mg/kg (P < 0.05). PBC linearly increased 42-day total antioxidant capacity (T-AOC) activity, but linearly decreased 42-day malondialdehyde level in liver (P < 0.05). An addition of PBC, irrespective of its level, increased 42-day hepatic T-AOC activity (P < 0.05). PBC quadratically increased 45-min yellowness value and linearly increased 24-h pH value, but quadratically decreased 24-h lightness value and linearly and quadratically reduced 24-h drip loss in breast muscle (P < 0.05). Compared with the control group, the 24-h drip loss of breast muscle was decreased by PBC, regardless of its dosage (P < 0.05). An addition of PBC linearly increased 42-day T-AOC and T-SOD activities of breast muscle (P < 0.05). Compared with the control group, muscle T-SOD activity was increased by PBC, regardless of its administration level (P < 0.05). These results suggested that PBC could improve growth performance, antioxidant capacity, and meat quality of broilers, and its recommended dosage is 1,000 mg/kg.


Subject(s)
Antioxidants , Chickens , Animals , Animal Feed/analysis , Chickens/physiology , Diet/veterinary , Dietary Supplements , Meat/analysis , Superoxide Dismutase
3.
Poult Sci ; 102(3): 102479, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36669355

ABSTRACT

This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on broilers subjected to (DQ)-induced oxidative stress. In experiment 1, one hundred and ninety-two male one-day-old Ross 308 broiler chicks were distributed into 4 groups and fed a basal diet supplemented with 0, 250, 500, or 1,000 mg/kg CGA for 21 d. In experiment 2, an equivalent number of male one-day-old chicks were allocated to 4 treatments for a 21-d trial: 1) Control group, normal birds fed a basal diet; 2) DQ group, DQ-challenged birds fed a basal diet; and 3) and 4) CGA-treated groups: DQ-challenged birds fed a basal diet supplemented with 500 or 1,000 mg/kg CGA. The intraperitoneal DQ challenge was performed at 20 d. In experiment 1, CGA administration linearly increased 21-d body weight, and weight gain and feed intake during 1 to 21 d (P < 0.05). CGA linearly and/or quadratically increased total antioxidant capacity, catalase, superoxide dismutase, and glutathione peroxidase activities, elevated glutathione level, and reduced malondialdehyde accumulation in serum, liver, and/or jejunum (P < 0.05). In experiment 2, compared with the control group, DQ challenge reduced body weight ratio (P < 0.05), which was reversed by CGA administration (P < 0.05). DQ challenge increased serum total protein level, aspartate aminotransferase activity, and total bilirubin concentration (P < 0.05), which were normalized when supplementing 500 mg/kg and/or 1,000 mg/kg CGA (P < 0.05). DQ administration elevated hepatic interleukin-1ß, tumor necrosis factor-α, and interleukin-6 levels (P < 0.05), and the values of interleukin-1ß were normalized to control values when supplementing CGA (P < 0.05). DQ injection decreased serum superoxide dismutase activity, hepatic catalase activity, and serum and hepatic glutathione level, but increased malondialdehyde concentration in serum and liver (P < 0.05), and the values of these parameters (except hepatic catalase activity) were reversed by 500 and/or 1,000 mg/kg CGA. The results suggested that CGA could improve growth performance, alleviate oxidative stress, and ameliorate hepatic inflammation in DQ-challenged broilers.


Subject(s)
Antioxidants , Chickens , Chlorogenic Acid , Animals , Male , Animal Feed/analysis , Antioxidants/metabolism , Body Weight , Catalase/metabolism , Chickens/metabolism , Chlorogenic Acid/pharmacology , Diet/veterinary , Dietary Supplements , Diquat/toxicity , Glutathione/metabolism , Inflammation/chemically induced , Inflammation/veterinary , Interleukin-1beta , Malondialdehyde , Oxidative Stress , Superoxide Dismutase/metabolism
4.
Environ Sci Pollut Res Int ; 30(7): 18026-18038, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36207632

ABSTRACT

This study investigated the effects of synbiotics supplementation on growth performance, antioxidant status, immune function, and intestinal barrier function in broilers subjected to cyclic heat stress. One hundred and forty-four 22-day-old male broilers were randomly assigned to one of three treatment groups of six replicates each for a 21-day study, with eight birds per replicate. Broilers in the control group were reared at a thermoneutral temperature and received a basal diet. Broilers in the other two heat-stressed groups were fed a basal diet supplemented without (heat-stressed group) and with 1.5 g/kg synbiotic (synbiotic group). One and a half gram of the synbiotic consisted with 3 × 109 colony forming units (CFU) Clostridium butyricum, 1.5 × 109 CFU Bacillus licheniformis, 4.5 × 1010 CFU Bacillus subtilis, 600 mg yeast cell wall, and 150 mg xylooligosaccharide. Compared with the control group, heat stress increased rectal temperatures at 28, 35, and 42 days of age, respectively (P < 0.05). Birds subjected to heat stress had reduced weight gain, feed intake, and feed efficiency during 22 to 42 days (P < 0.05). In contrast, supplementation with the synbiotic decreased rectal temperature at 42 days of age and elevated weight gain of heat stress-challenged broilers (P < 0.05). Heat-stressed broilers exhibited a lower superoxide dismutase (SOD) activity in jejunal mucosa and a higher malondialdehyde accumulation in serum, liver and jejunal mucosa (P < 0.05), and the regressive SOD activity was normalized to control level when supplementing synbiotic (P < 0.05). Heat stress increased interleukin-1ß (IL-1ß) and interferon-γ (IFN-γ) levels in serum and IL-1ß content in jejunal mucosa of broilers (P < 0.05). Synbiotic reduced IL-1ß level in serum of broilers subjected to heat stress (P < 0.05). Compared with the control group, elevated serum diamine oxidase activity and reduced jejunal villus height were observed in broilers of the heat-stressed group (P < 0.05), and the values of these two parameters in the synbiotic group were intermediate (P > 0.05). Heat stress upregulated mRNA abundance of IL-1ß and IFN-γ and downregulated gene expression levels of occluding and zonula occluden-1 (ZO-1) in jejunal mucosa of broilers (P < 0.05). The alterations in the mRNA expression levels of jejunal IL-1ß and ZO-1 were reversed by the synbiotic (P > 0.05). In conclusion, dietary synbiotics could improve growth performance, antioxidant capacity, immune function, and intestinal barrier function in heat-stressed broilers.


Subject(s)
Antioxidants , Synbiotics , Animals , Male , Animal Feed/analysis , Antioxidants/metabolism , Chickens/metabolism , Diet/veterinary , Dietary Supplements , Heat-Shock Response , Immunity , Superoxide Dismutase/metabolism
5.
Poult Sci ; 102(1): 102257, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36399933

ABSTRACT

This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on broilers subjected to dextran sodium sulfate (DSS)-induced intestinal damage. One hundred and forty-four 1-day-old male Arbor Acres broiler chicks were allocated into one of 3 groups with 6 replicates of eight birds each for a 21-d trial. The treatments included: 1) Control group: normal birds fed a basal diet; 2) DSS group: DSS-treated birds fed a basal diet; and 3) CGA group: DSS-treated birds fed a CGA-supplemented control diet. An oral DSS administration via drinking water was performed from 15 to 21 d of age. Compared with the control group, DSS administration reduced 21-d body weight and weight gain from 15 to 21 d, but increased absolute weight of jejunum and absolute and relative weight of ileum (P < 0.05). DSS administration elevated circulating D-lactate concentration and diamine oxidase activity (P < 0.05), which were partially reversed when supplementing CGA (P < 0.05). The oral administration with DSS decreased villus height and villus height/crypt depth ratio, but increased crypt depth in jejunum and ileum (P < 0.05). Compared with the control group, DSS administration increased serum glutathione level and jejunal catalase activity and malonaldehyde accumulation, but decreased jejunal glutathione level (P < 0.05). In contrast, feeding a CGA-supplemented diet normalized serum glutathione and jejunal malonaldehyde levels, and increased jejunal glutathione concentration in DSS-administrated birds (P < 0.05). Additionally, CGA supplementation reduced ileal malonaldehyde accumulation in DSS-treated birds (P < 0.05). DSS challenge increased levels of serum interferon-γ and interleukin-6, jejunal interleukin-1ß, tumor necrosis factor-α, and interleukin-6, and ileal interleukin-1ß and interleukin-6 when compared with the control group (P < 0.05). The elevated serum interferon-γ and ileal interleukin-6 levels were normalized to control values when supplementing CGA (P < 0.05). The results suggested that CGA administration could partially prevent DSS-induced increased intestinal permeability, oxidative damage, and inflammation in broilers, although it did not improve their growth performance and intestinal morphology.


Subject(s)
Chickens , Chlorogenic Acid , Animals , Male , Dextrans , Interleukin-1beta , Interleukin-6 , Interferon-gamma , Dietary Supplements , Diet/veterinary , Glutathione , Malondialdehyde , Animal Feed/analysis
6.
J Sci Food Agric ; 103(2): 764-769, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36054497

ABSTRACT

BACKGROUND: The present study aimed at evaluating the in vitro adsorption capability of chitooligosaccharide (COS) with some metal elements (Fe, Zn, Cd, Pb) at different pH values along with potential effects of dietary COS supplementation on growth performance, mineral content, meat quality and oxidant status in broilers. Day-old male chicks were randomly distributed into two groups and offered a basal diet supplemented with or without 30 mg kg-1 COS for 42 days. RESULTS: In vitro trials demonstrated that Fe levels were higher (P < 0.001) in the COS-treated group compared with the non-treated group at pH of 2.5. However, these levels became lowered when pH values were raised to 5 (P < 0.01) or 6 (P < 0.001). Similarly, COS adsorbed more (P < 0.05) Zn at pH values of 2.5 and 6, and Cd contents at pH of 2.5 for 70 min when compared with the control. For in vivo trial, the feed-to-gain ratio, serum Cu (P < 0.01), hepatic Mn, Cr (P < 0.05) and intramuscular Cd (P < 0.01) were lower in response to COS treatment. Supplementation of COS improved (P < 0.05) meat quality of broilers in terms of lower drip loss, cooking loss and malondialdehyde content with a concomitant increase (P < 0.01) in the pH of breast meat at 24 h post mortem. CONCLUSION: COS adsorbed heavy metal ions not only in vitro but also in broilers, and dietary supplementation with 30 mg kg-1 COS improved growth performance, breast meat quality and oxidant status in broilers. © 2022 Society of Chemical Industry.


Subject(s)
Animal Feed , Chickens , Animals , Male , Animal Feed/analysis , Oxidants , Cadmium , Meat/analysis , Minerals , Dietary Supplements/analysis , Diet , Antioxidants
7.
Poult Sci ; 101(11): 102108, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36099659

ABSTRACT

This study was designed to examine the effects of different levels of beta-sitosterol (BS) supplementation on growth performance, serum biochemical indices, redox status, and intestinal permeability-related parameters and morphology of young broilers. Two hundred and forty male Arbor Acres broiler chicks were allocated into 5 groups of 6 replicates with 8 birds each, and fed a basal diet supplemented with 0, 25, 50, 75, and 100 mg/kg BS for 21-d, respectively. The BS quadratically decreased feed conversion ratio during 1 to 14 d and 1 to 21 d, with its effect being more prominent at 25 or 50 mg/kg (P < 0.05). The BS linearly and quadratically reduced 14-d plasma diamine oxidase activity and D-lactate level, and this effect was more pronounced when its supplemental level was 25 or 50 mg/kg (P < 0.05). The BS linearly increased duodenal villus height (VH) and quadratically increased jejunal VH and ratio of VH and crypt depth (CD) at 14 d, and these effects in 25 mg/kg group were more remarkable (P < 0.05). Similarly, BS linearly or quadratically increased VH and ratio of VH and CD, but decreased CD in the jejunum and ileum at 21 d, with these effects being more pronounced at 50 mg/kg (P < 0.05). The BS supplementation especially at 50 or 75 mg/kg linearly or quadratically reduced 14-d serum and 21-d hepatic malondialdehyde concentration, and increased serum glutathione peroxidase and catalase activities at 14 and 21 d (P < 0.05). Moreover, the BS administration linearly and/or quadratically increased glutathione peroxidase, catalase, and superoxide dismutase activities and glutathione level, and reduced malondialdehyde accumulation in the intestinal mucosa at 14 and/or 21 d, and these consequences were more significant in 50 to 100 mg/kg BS-supplemented groups (P < 0.05). The results demonstrated that BS administration could improve growth performance, intestinal barrier function, and antioxidant status of broilers at an early age, with these effects being more pronounced at a level of 50 mg/kg.


Subject(s)
Antioxidants , Chickens , Animals , Male , Antioxidants/metabolism , Catalase/metabolism , Animal Feed/analysis , Glutathione Peroxidase/metabolism , Dietary Supplements , Diet/veterinary , Malondialdehyde/metabolism , Permeability
8.
Poult Sci ; 101(5): 101640, 2022 May.
Article in English | MEDLINE | ID: mdl-35378350

ABSTRACT

The aim of this study was to evaluate effects of palygorskite-based antibacterial agent (PAA) as an alternative to antibiotic on growth performance, intestinal barrier function, and immunity in broilers. Three hundred and eighty-four mixed-sex 1-day-old Ross 308 broiler chicks were allocated into 6 groups of 8 replicates with 8 birds each. Birds were given a basal diet, an antibiotic diet (50 mg/kg chlortetracycline), and the basal diet supplemented with 250, 500, 1,000, and 2,000 mg/kg PAA for 42 d, respectively. Compared with control group, supplementing 1,000 mg/kg PAA reduced overall feed conversion ratio (P < 0.05), with its value being similar to that of antibiotic group (P > 0.05). However, a higher level of PAA (2,000 mg/kg) increased feed conversion ratio during the late period (P < 0.05). The 1,000 and 2,000 mg/kg PAA decreased plasma endotoxin and D-lactate levels at 42 d (P < 0.05) to comparable values (P > 0.05). The 1,000 mg/kg PAA decreased jejunal crypt depth, while 500 and 1,000 mg/kg PAA increased the ratio between jejunal villus height and crypt depth at 42 d (P < 0.05), with their values being similar to antibiotic group (P > 0.05). The highest level of PAA increased 42-d jejunal mucosal secretory immunoglobulin A and immunoglobulin M concentrations (P < 0.05). The 1,000 and 2,000 mg/kg PAA reduced 21-d interleukin-1ß and tumor necrosis factor-α (TNF-α) levels in serum and ileal mucosa and 42-d interferon-γ level in serum and jejunal mucosa (P < 0.05), which did not differ from antibiotic group (P > 0.05). Moreover, PAA administration, regardless of its dosage, reduced 42-d serum TNF-α concentration, and 500 to 2,000 mg/kg PAA decreased 21-d and 42-d jejunal and 42-d ileal mucosal TNF-α levels (P < 0.05), with their values being comparable with antibiotic group (P > 0.05). The results suggested that PAA as an alternative to antibiotic could improve growth performance, intestinal barrier function, and immunity of broilers, and its optimal dosage was 1,000 mg/kg.


Subject(s)
Animal Feed , Chickens , Animal Feed/analysis , Animals , Anti-Bacterial Agents/pharmacology , Diet/veterinary , Dietary Supplements , Intestinal Mucosa , Intestines , Magnesium Compounds , Silicon Compounds , Tumor Necrosis Factor-alpha
9.
Comb Chem High Throughput Screen ; 25(11): 1914-1951, 2022.
Article in English | MEDLINE | ID: mdl-34629040

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease with an increasing incidence associated with increased life expectancy. The application of traditional Chinese medicine in the treatment of OA has become a research hotspot. OBJECTIVE: This study investigated the effects of XGS externally applied to osteoarthritic joints and analyze its effect on pain in monosodium iodoacetate (MIA)-induced OA rats. This study also evaluates potential mechanisms behind the anti-osteoarthritic effects of XGS. METHODS: A total of 24 Sprague Dawley rats were evenly and randomly divided into three separate groups, including the normal control (NC), OA and XGS groups. MIA (50 µL, 10 mg/mL) was injected into the left knee joints of the rats to induce OA. After 7 days, The rats of XGS group were given XGS (0.45 g) that was externally applied to the left knee joint, were fixed with gauze, and continuously administered XGS for 28 days. Morphological changes in tissues and organs were examined using H&E staining. Biochemical indicators were measured using an automatic biochemical analyzer. Inflammatory cytokines were detected using ELISA kits and immunohistochemistry. RNA-based high-throughput sequencing (RNA-seq) was performed to detect differential expression of mRNAs in normal and MIA-induced OA rats. RESULTS: Stride of the left leg was extended in rats, matrix increased on cartilage tissue surfaces, and inflammatory cytokines were reduced when treated with XGS. RNA-seq results revealed that the PI3K-Akt signaling pathway is activated in the OA model. The qRT-PCR showed that the expression levels of Tnn, Col6a6, Igf1 and Lamb1 were up-regulated by XGS. CONCLUSION: Altogether, this work demonstrated the potential therapeutic effects of XGS in rats with OA induced by MIA. The XGS may be considered an alternative therapy to manage OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Cartilage, Articular/metabolism , Cytokines/metabolism , Disease Models, Animal , Iodoacetic Acid/toxicity , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Pain/chemically induced , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA/metabolism , Rats , Rats, Sprague-Dawley
10.
Biol Trace Elem Res ; 200(4): 1826-1834, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34101102

ABSTRACT

This experiment was to study the effects of zinc oxide nanoparticles (ZnO-NPs) on growth, intestinal barrier, oxidative status, and mineral deposition. In total, 256 one-day-old chicks were randomly allotted to 4 dietary groups and fed with basal diet plus 80 mg/kg ZnSO4 (ZnSO4 group) or plus 40, 80, and 160 mg/kg ZnO-NPs, respectively, for 21 days. Compared with the ZnSO4 group, dietary 40, 80, and 160 mg/kg ZnO-NPs did not alter growth (average daily gain, body weight, and gain to feed ratio), and serum activities of glutamic-pyruvic transaminase, alkaline phosphatase and glutamic oxalacetic transaminase (P > 0.05). However, dietary 80 and 160 mg/kg ZnO-NPs linearly decreased serum D-lactate content and diamine oxidase activity (P < 0.01). Moreover, 80 mg/kg ZnO-NPs enhanced zonula occludens-1 (ZO-1) mRNA expression in jejunal mucosa (P = 0.02). Dietary ZnO-NPs increased total antioxidant capacity activity (P = 0.01), and 80 mg/kg ZnO-NPs decreased malondialdehyde content in jejunal mucosa as compared to the ZnSO4 group (P = 0.02). In contrast, dietary ZnO-NPs did not alter mRNA expressions of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, heme oxygennase-1 (HO-1) and NAD (P)H: quinone oxidoreductase 1 (NQO1) (P > 0.05). No significant difference was found in selected mineral concentrations (Mn, Cu, Fe and Zn) in the liver among ZnSO4 and 3 ZnO-NP groups (P > 0.05). However, 160 mg/kg ZnO-NPs increased fecal contents of Zn, Fe and Cu (P < 0.01), but did not affect fecal Mn level (P > 0.05). Therefore, results suggested that ZnO-NPs could be an additive to enhance the intestinal barrier and antioxidant capacity of broiler chicks, whereas the inclusion of 80 mg/kg would be more efficient.


Subject(s)
Nanoparticles , Zinc Oxide , Animal Feed , Animals , Chickens/metabolism , Dietary Supplements , Minerals , Oxidative Stress , Zinc Oxide/pharmacology
11.
Environ Sci Pollut Res Int ; 28(23): 30197-30206, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33586106

ABSTRACT

This study evaluated protective effects of synbiotic on meat quality and oxidative status of breast muscle in heat-stressed broilers. Twenty 2-day-old broilers were allocated in a 2×2 factorial design, and the main factors consisted of synbiotic level (0 (basal diet) or 1.5 g/kg synbiotic) and temperature (thermoneutral or high temperature), resulting in 4 treatments. From 22 to 42 days, chickens were raised at thermoneutral temperature (22 °C) or subjected to cyclic high temperature (heat stress, HS) by keeping them at 32-33 °C for 8 h and 22 °C for rest 16 h daily. Cyclic HS decreased relative weight, redness (45 min), and pH values (45 min and 24 h) but increased contents of moisture and ether extract, lightness (45 min and 24 h), drip loss (24 h and 48 h), and cooking loss in breast muscle of broilers compared with those under thermoneutral temperature. It also increased malondialdehyde content and mRNA abundances of heat shock protein 70 (HSP70) and HSP90 but decreased glutathione (GSH) concentration and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), as well as mRNA abundances of nuclear factor (erythroid 2)-like 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), GSH-Px, and copper and zinc superoxide dismutase in breast muscle in broilers. Dietary synbiotic supplementation was effective in increasing weight and reducing lightness (45 min), drip loss (24 h and 48 h) and cooking loss of breast muscle in heat-stressed broilers compared with those fed the basal diet. It also reduced malondialdehyde content and HSP70 mRNA abundance and increased GSH-Px activity, GSH content, and mRNA abundances of Nrf2, NQO1 and GSH-Px in breast muscle of heat-stressed broilers. These results suggested that synbiotic supplementation at a level of 1.5 g/kg could ameliorate compromised meat quality and oxidative status in broilers under cyclic HS.


Subject(s)
Chickens , Synbiotics , Animal Feed/analysis , Animals , Antioxidants , Diet , Dietary Supplements/analysis , Heat-Shock Response , Hot Temperature , Meat/analysis , Oxidative Stress
12.
Poult Sci ; 99(11): 5915-5924, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33142509

ABSTRACT

This study was conducted to evaluate the effects of dietary squalene supplementation on the growth performance, plasma biochemical indices, antioxidant status, and meat quality in broilers. Two hundred and forty 0-day-old male chicks were allocated into 5 groups of 6 replicates and were fed a basal diet supplemented with 0 (Control group), 250, 500, 1,000, or 2,000 mg/kg squalene for 42 d. Dietary squalene supplementation linearly increased weight gain and feed efficiency of broilers during the grower and overall periods (P < 0.05). Squalene linearly decreased 21-d malondialdehyde (MDA) level and 42-d glutathione peroxidase (GSH-Px) activity, and both linearly and quadratically decreased 42-d MDA level in plasma (P < 0.05). In contrast, squalene linearly increased plasma reduced form of glutathione (GSH) level on 21 and 42 d and superoxide dismutase activity on 42 d (P < 0.05). Squalene supplementation linearly decreased 21-d MDA accumulation but linearly increased GSH level on 21 d and 42 d and both linearly and quadratically increased 21-d GSH-Px activity in liver (P < 0.05). Supplementing squalene linearly increased pH value at 48 h and linearly decreased lightness at 48 h and 24-h drip loss of breast muscle (P < 0.05). The lightness at 24 h and cooking loss of breast muscle were both linearly and quadratically reduced by squalene (P < 0.05). Dietary squalene administration linearly decreased MDA accumulation but linearly increased GSH level and GSH-Px activity of breast muscle (P < 0.05). Compared with the control group, aforementioned growth performance, antioxidant-related parameters (except 42-d GSH-Px in plasma and breast and hepatic GSH), and meat quality were improved by squalene when its level was 1,000 and 2,000 mg/kg (P < 0.05), with their results being similar between these 2 groups (P > 0.05). It was concluded that squalene administration especially at a level of 1,000 mg/kg can improve growth performance, antioxidant status, and meat quality in broilers, providing insights into its application as a potential feed additive in broiler production.


Subject(s)
Antioxidants , Chickens , Diet , Dietary Supplements , Growth , Meat , Squalene , Animal Feed/analysis , Animals , Chickens/growth & development , Chickens/immunology , Diet/veterinary , Growth/drug effects , Male , Meat/standards , Plasma/chemistry , Plasma/drug effects , Squalene/pharmacology
13.
J Anim Sci ; 98(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33027517

ABSTRACT

This investigation evaluated the potential of natural antioxidants, pterostilbene (PT) and its parent compound resveratrol (RSV), to alleviate hepatic damage, redox imbalance, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in early-weaned piglets. A total of 144 suckling piglets were randomly assigned to four treatments (six replicates per group, n = 6): 1) sow reared, 2) early weaned and fed a basal diet, 3) early weaned and fed the basal diet supplemented with 300 mg/kg PT, or with 4) 300 mg/kg RSV. Early weaning increased plasma alanine aminotransferase (P = 0.004) and aspartate aminotransferase (P = 0.009) activities and hepatic apoptotic rate (P = 0.001) in piglets compared with the sow-reared piglets. Early weaning decreased hepatic adenosine triphosphate (ATP; P = 0.006) content and mitochondrial complexes III (P = 0.019) and IV activities (P = 0.038), but it increased superoxide anion accumulation (P = 0.026) and the expression levels of ER stress markers, such as glucose-regulated protein 78 (P < 0.001), CCAAT/enhancer-binding protein-homologous protein (P = 0.001), and activating transcription factor (ATF) 4 (P = 0.006). PT was superior to RSV at mitigating liver injury and oxidative stress after early weaning, as indicated by decreases in the number of apoptotic cells (P = 0.036) and the levels of superoxide anion (P = 0.002) and 8-hydroxy-2 deoxyguanosine (P < 0.001). PT increased mitochondrial deoxyribonucleic acid content (P = 0.031) and the activities of citrate synthase (P = 0.005), complexes I (P = 0.004) and III (P = 0.011), and ATP synthase (P = 0.041), which may contribute to the mitigation of hepatic ATP deficit (P = 0.017) in the PT-treated weaned piglets. PT also prevented increases in the ER stress marker and ATF 6 expression levels and in the phosphorylation of inositol-requiring enzyme 1 alpha caused by early weaning (P < 0.05). PT increased sirtuin 1 activity (P = 0.031) in the liver of early-weaned piglets than those in the early-weaned piglets fed a basal diet. In conclusion, PT supplementation alleviates liver injury in weanling piglets probably by inhibiting mitochondrial dysfunction and ER stress.


Subject(s)
Dietary Supplements , Endoplasmic Reticulum Stress , Animals , Female , Mitochondria/metabolism , Oxidation-Reduction , Stilbenes , Swine , Weaning
14.
Poult Sci ; 99(6): 3158-3167, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32475452

ABSTRACT

This study investigated the effects of pterostilbene (PT) supplementation on growth performance, hepatic injury, and antioxidant variables in a broiler chicken model with diquat (DQ)-induced oxidative stress. There were 192 one-day-old male Ross 308 broiler chicks randomly allocated to one of two treatment groups: 1) broilers fed a basal diet and 2) broilers fed a diet supplemented with 400 mg/kg PT. At 20 D of age, half of the broilers in each group were intraperitoneally injected with DQ (20 mg per kg BW), whereas the other half were injected with an equivalent amount of sterile saline. Diquat induced a rapid loss of BW (P < 0.001) 24 h post-injection, but dietary PT supplementation improved the BW change of broilers (P = 0.014). Compared with unchallenged controls, the livers of DQ-treated broilers were in severe cellular damage and oxidative stress, with the presence of higher plasma transaminase activities (P < 0.05), a greater number of apoptotic hepatocytes (P < 0.001), and an increased malondialdehyde content (P = 0.007). Pterostilbene supplementation prevented the increases in plasma aspartate aminotransferase activity (P = 0.001), the percentage of hepatocyte apoptosis (P < 0.001), and the hepatic malondialdehyde accumulation (P = 0.011) of the DQ-treated broilers. Regarding the hepatic antioxidant function, PT significantly increased total antioxidant capacity (P = 0.007), superoxide dismutase activity (P = 0.016), reduced glutathione content (P = 0.011), and the ratio of reduced glutathione to oxidized glutathione (P = 0.003), whereas it reduced the concentration of oxidized glutathione (P = 0.017). Pterostilbene also boosted the expression levels of nuclear factor erythroid 2-related factor 2 (P = 0.010), heme oxygenase 1 (P = 0.037), superoxide dismutase 1 (P = 0.014), and the glutamate-cysteine ligase catalytic subunit (P = 0.001), irrespective of DQ challenge. In addition, PT alleviated DQ-induced adenosine triphosphate depletion (P = 0.010). In conclusion, PT attenuates DQ-induced hepatic injury and oxidative stress of broilers presumably by restoring hepatic antioxidant function.


Subject(s)
Chemical and Drug Induced Liver Injury/veterinary , Chickens/metabolism , Diquat/adverse effects , Herbicides/adverse effects , Poultry Diseases/prevention & control , Protective Agents/pharmacology , Stilbenes/pharmacology , Animal Feed/analysis , Animals , Antioxidants/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chickens/growth & development , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Male , Oxidative Stress , Poultry Diseases/chemically induced , Poultry Diseases/metabolism , Protective Agents/administration & dosage , Protective Agents/metabolism , Random Allocation , Stilbenes/administration & dosage , Stilbenes/metabolism
15.
Food Funct ; 11(5): 4202-4215, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32352466

ABSTRACT

This study investigated the potential of resveratrol (RSV) and its derivative pterostilbene (PT) to prevent diquat (DQ)-induced hepatic oxidative damage and mitochondrial dysfunction in piglets. Seventy-two weanling piglets were randomly divided into the following treatment groups: non-challenged control group, DQ-challenged control group, and DQ-challenged groups supplemented with either 300 mg RSV per kg of diet or an equivalent amount of PT. Each treatment group consisted of six replicates with three piglets per replicate (n = 6). After a two-week feeding trial, piglets were intraperitoneally injected with either 10 mg DQ per kg of body weight or sterile saline. At 24 hours post-injection, one piglet from each replicate (six piglets per treatment) was randomly selected for sample collection and biochemical analysis. Compared with the DQ-challenged control group, PT attenuated the growth loss of piglets after the DQ challenge (P < 0.05). Administration of PT was more effective than its parent compound in inhibiting the DQ-induced hepatic apoptosis and the increased generation of total cholesterol, superoxide anion, and lipid peroxidation products (P < 0.05). Specifically, PT facilitated nuclear factor erythroid 2-related factor 2 signals and the expression and activity of manganese superoxide dismutase, while it also prevented mitochondrial swelling, membrane potential collapse, and adenosine triphosphate depletion, possibly through the activation of sirtuin 1 (P < 0.05). These results indicate that PT may be superior to RSV as an antioxidant to protect the liver of young piglets from oxidative insults.


Subject(s)
Chemical and Drug Induced Liver Injury/veterinary , Diquat/toxicity , Mitochondrial Diseases/veterinary , Oxidative Stress/drug effects , Resveratrol/pharmacology , Stilbenes/pharmacology , Animals , Antioxidants/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Energy Metabolism/drug effects , Gene Expression Regulation/drug effects , Glutathione/metabolism , Herbicides/toxicity , Liver/drug effects , Liver/metabolism , Male , Mitochondrial Diseases/drug therapy , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Resveratrol/chemistry , Sirtuin 1/genetics , Sirtuin 1/metabolism , Stilbenes/chemistry , Superoxides/metabolism , Swine
16.
Environ Sci Pollut Res Int ; 27(23): 29000-29008, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32424752

ABSTRACT

Heat stress is a major concern in broiler's production, which can damage liver of broilers. This study investigated the protective effects of mannan oligosaccharide (MOS) on heat stress-induced hepatic injury in broilers. A total of 144 day-old male chicks were allocated into three treatment groups. Broilers raised under normal ambient temperature were fed a basal diet (control group), and broilers under heat stress (32-33 °C for 8 h daily) were given the basal diet supplemented without MOS (heat stress group) or with 1 g/kg MOS (MOS group) for 42 days. Compared with the control group, heat stress reduced liver weight, whereas increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities in the serum. It also reduced glutathione peroxidase (GSH-Px) activity in the serum and liver, GSH content, and superoxide dismutase (SOD) activity in the liver, but increased malondialdehyde (MDA) concentration in the serum and liver. Dietary MOS decreased serum ALT activity in heat-stressed broilers. MOS inclusion also decreased serum MDA content, but elevated hepatic GSH-Px and SOD activities, with MDA content and GSH-Px activity still being different from the control group, and SOD activity being similar to the control group. Heat stress increased concentrations of tumor necrosis factor α (TNF-α) in the serum and liver, interleukin-1ß (IL-1ß) in the liver, and mRNA abundances of HSP70, TLR4, MyD88, TNF-α, and IL-1ß in the liver of broilers. Serum TNF-α content and mRNA abundances of hepatic TLR4 and TNF-α in MOS group were lower than the heat stress group, whereas these indexes were still higher than the control group. Our results indicated that dietary MOS ameliorated hepatic damage in heat-stressed broilers through alleviation of oxidative stress and inflammation.


Subject(s)
Chickens , Mannans , Animal Feed/analysis , Animals , Diet , Dietary Supplements , Heat-Shock Response , Liver , Male , Oligosaccharides , Oxidative Stress
17.
Poult Sci ; 99(3): 1400-1408, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32111314

ABSTRACT

This research investigated effects of dietary ß-sitosterol addition at different levels on serum lipid levels, immune function, oxidative status, and intestinal morphology in broilers. One-day-old broiler chicks were allocated to 5 groups of 6 replicates. Chickens in the 5 groups were fed a basal diet supplemented with 0 (control group), 40, 60, 80, and 100 mg/kg of ß-sitosterol for 42 D, respectively. ß-Sitosterol linearly decreased (P < 0.05) concentrations of serum total cholesterol, jejunal tumor necrosis factor α (TNF-α), and ileal interleukin 1ß (IL-1ß) and mRNA relative expressions levels of jejunal TLR4 and ileal MyD88, whereas it linearly increased (P < 0.05) contents of jejunal immunoglobulin G (IgG), ileal secreted IgA and glutathione, jejunal catalase activity and Nrf2 mRNA relative expression level, villus height (VH), and VH-to-crypt depth (CD) ratio (VH:CD) in the jejunum and ileum. Linear and quadratic increases (P < 0.05) in absolute and relative spleen weight were observed by dietary ß-sitosterol, whereas malondialdehyde (MDA) concentration in the jejunum and ileum followed the opposite trend (P < 0.05). Compared with the control group, dietary ß-sitosterol at higher than or equal to 60 mg/kg level decreased (P < 0.05) contents of serum total cholesterol, ileal MDA, and jejunal TLR4 mRNA relative expression level, whereas it increased (P < 0.05) absolute spleen weight and ileal glutathione content. Higher than or equal to 80 mg/kg level of ß-sitosterol enhanced (P < 0.05) jejunal IgG concentration, VH, catalase activity, and Nrf2 relative expression level and ileal secreted IgA content, but reduced (P < 0.05) ileal IL-1ß content and MyD88 mRNA relative expression level. ß-Sitosterol addition at 60 and 80 mg/kg levels increased (P < 0.05) relative spleen weight, whereas it decreased (P < 0.05) jejunal MDA accumulation. Moreover, 100 mg/kg level of ß-sitosterol reduced (P < 0.05) jejunal TNF-α level, but it increased (P < 0.05) VH in the jejunum and VH:CD in the jejunum and ileum. Accordingly, dietary ß-sitosterol supplementation could regulate serum cholesterol level, promote immune function, and improve intestinal oxidative status and morphology in broilers.


Subject(s)
Chickens/physiology , Immunity, Innate/drug effects , Intestines/drug effects , Lipids/blood , Oxidative Stress/drug effects , Sitosterols/metabolism , Animal Feed/analysis , Animals , Chickens/blood , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Intestines/anatomy & histology , Random Allocation , Sitosterols/administration & dosage
18.
J Anim Sci ; 98(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31822918

ABSTRACT

The present study explored the potential effect of pterostilbene as a prophylactic treatment on the lipopolysaccharide (LPS)-induced intestinal injury of broiler chickens by monitoring changes in mucosal injury indicators, redox status, and inflammatory responses. In total, 192 one-day-old male Ross 308 broiler chicks were randomly divided into four groups. This trial consisted of a 2 × 2 factorial design with a diet factor (supplemented with 0 or 400 mg/kg pterostilbene from 1 to 22 d of age) and a stress factor (intraperitoneally injected with saline or LPS at 5.0 mg/kg BW at 21 da of age). The results showed that LPS challenge induced a decrease in BW gain (P < 0.001) of broilers during a 24-h period postinjection; however, this decrease was prevented by pterostilbene supplementation (P = 0.031). Administration of LPS impaired the intestinal integrity of broilers, as indicated by increased plasma diamine oxidase (DAO) activity (P = 0.014) and d-lactate content (P < 0.001), reduced jejunal villus height (VH; P < 0.001) and the ratio of VH to crypt depth (VH:CD; P < 0.001), as well as a decreased mRNA level of jejunal tight junction protein 1 (ZO-1; P = 0.002). In contrast, pterostilbene treatment increased VH:CD (P = 0.018) and upregulated the mRNA levels of ZO-1 (P = 0.031) and occludin (P = 0.024) in the jejunum. Consistently, pterostilbene counteracted the LPS-induced increased DAO activity (P = 0.011) in the plasma. In addition, the LPS-challenged broilers exhibited increases in nuclear accumulation of nuclear factor kappa B (NF-κB) p65 (P < 0.001), the protein content of tumor necrosis factor α (P = 0.033), and the mRNA abundance of IL-1ß (P = 0.042) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3; P = 0.019). In contrast, pterostilbene inhibited the nuclear translocation of NF-κB p65 (P = 0.039) and suppressed the mRNA expression of IL-1ß (P = 0.003) and NLRP3 (P = 0.049) in the jejunum. Moreover, pterostilbene administration induced a greater amount of reduced glutathione (P = 0.017) but a lower content of malondialdehyde (P = 0.023) in the jejunum of broilers compared with those received a basal diet. Overall, the current study indicates that dietary supplementation with pterostilbene may play a beneficial role in alleviating the intestinal damage of broiler chicks under the conditions of immunological stress.


Subject(s)
Chickens/physiology , Dietary Supplements/analysis , Stilbenes/administration & dosage , Stress, Physiological/immunology , Animals , Biomarkers/metabolism , Chickens/genetics , Chickens/immunology , Diet/veterinary , Intestinal Mucosa/metabolism , Intestines/drug effects , Lipopolysaccharides/adverse effects , Male , Malondialdehyde/metabolism , Occludin/metabolism , RNA, Messenger/genetics , Random Allocation
19.
J Anim Physiol Anim Nutr (Berl) ; 103(4): 1050-1059, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31140661

ABSTRACT

The effects of dietary betaine supplementation on growth performance, carcass characteristics, muscle amino acid contents, meat quality, antioxidant capacity, myogenic gene expression and mechanistic target of rapamycin (mTOR) signalling pathway in Cherry Valley ducks were evaluated. A total of 720 1-day-old Cherry Valley ducks were randomly distributed into four groups with six replicates of 30 birds for a 42-day feeding trial. Ducks were fed a basal diet supplemented with 0 (control), 250, 500 or 1,000 mg/kg betaine, respectively. Growth performance was not affected by betaine. Incremental levels of betaine linearly (p < 0.05) increased the breast muscle yield and linearly (p < 0.05) decreased the subcutaneous fat thickness and the abdominal fat yield. The contents of methionine, serine, glycine, glutamate and total non-essential amino acid in breast muscle were linearly (p < 0.05) increased by betaine supplementation. With increasing betaine levels, the drip loss and the content of malondialdehyde (MDA) were linearly (p < 0.05) decreased, and the redness of meat (linear p < 0.05), the activities of catalase (CAT) (linear p < 0.05) and total superoxide dismutase (T-SOD) (linear p < 0.05, quadratic p < 0.05) were increased. Moreover, the myogenic differentiation factor 1 (MyoD1) mRNA expression and the mTOR mRNA expression and protein phosporylation were linearly (p < 0.05) up-regulated, and the myostatin (MSTN) mRNA expression was linearly (p < 0.05) down-regulated by betaine supplementation. Overall, this study indicated that betaine supplementation did not affect the growth performance of Cherry Valley ducks, but could linearly increase some amino acid contents in breast muscle, especially glycine, and increase muscle antioxidant activity to improve meat quality. Moreover, betaine supplementation could improve the breast muscle yield by increasing MyoD1 mRNA expression, decreasing MSTN mRNA expression and regulating mTOR signalling pathway.


Subject(s)
Amino Acids/metabolism , Betaine/pharmacology , Dietary Supplements , Meat/standards , Muscle, Skeletal/growth & development , Animals , Antioxidants/metabolism , Betaine/administration & dosage , Ducks , Gene Expression Regulation/drug effects , Muscle, Skeletal/drug effects , Phosphorylation , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
20.
J Anim Physiol Anim Nutr (Berl) ; 103(3): 868-881, 2019 May.
Article in English | MEDLINE | ID: mdl-30941824

ABSTRACT

This study investigated the effects of dietary supplementation with L -methionine (L -Met), DL -methionine (DL -Met) and calcium salt of the methionine hydroxyl analog (MHA-Ca) on growth performance, intestinal morphology, antioxidant capacity and immune function in intra-uterine growth-retarded (IUGR) suckling piglets. Six normal birthweight (NBW) female piglets and 24 same-sex IUGR piglets were selected at birth. Piglets were fed nutrient adequate basal diet supplemented with 0.08% L -alanine (NBW-CON), 0.08% L -alanine (IUGR-CON), 0.12% L -Met (IUGR-LM), 0.12% DL -Met (IUGR-DLM) and 0.16% MHA-Ca (IUGR-MHA-Ca) from 7 to 21 days of age respectively (n = 6). The results indicated that IUGR decreased average daily milk (dry matter) intake and average daily gain and increased feed conversion ratio of suckling piglets (p < 0.05). Compared with the NBW-CON piglets, IUGR also impaired villus morphology and reduced antioxidant capacity and immune homeostasis in the intestine of IUGR-CON piglets (p < 0.05). Supplementation with L -Met enhanced jejunal villus height (VH) and villus area and ileal VH of IUGR piglets compared with IUGR-CON piglets (p < 0.05). Similarly, DL -Met supplementation increased VH and the ratio of VH to crypt depth in the jejunum compared with IUGR-CON pigs (p < 0.05). Supplementation with L -Met and DL -Met (0.12%) tended to increase reduced glutathione content and reduced glutathione: oxidized glutathione ratio and decrease protein carbonyl concentration in the jejunum of piglets when compared with the IUGR-CON group (p < 0.10). However, supplementation with MHA-Ca had no effect on the intestinal redox status of IUGR piglets (p > 0.10). In conclusion, supplementation with either L -Met or DL -Met has a beneficial effect on the intestinal morphology and antioxidant capacity of IUGR suckling piglets.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Fetal Growth Retardation , Intestines , Methionine , Swine , Animals , Female , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals, Suckling , Antioxidants , Diet/veterinary , Fetal Growth Retardation/veterinary , Intestines/anatomy & histology , Intestines/drug effects , Methionine/pharmacology , Oxidation-Reduction , Swine/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL