ABSTRACT
OBJECTIVE: To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism. METHODS: B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR. RESULTS: In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells. CONCLUSIONS: Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.
Subject(s)
Alocasia , Mice , Animals , Alocasia/metabolism , MAP Kinase Signaling System , Caspase 3/metabolism , Apoptosis , RNA, Messenger/genetics , RNA, Messenger/metabolismABSTRACT
Root-knot nematodes (Meloidogyne spp.) are plant-parasitic nematodes that cause serious damage on a worldwide basis. There are many species of traditional Chinese medicine (TCM) plants, but only a few have been reported to be infected by Meloidogyne species. From 2020 to 2022, a survey was conducted in the Qinling mountain area, which is the main producing region of TCM plants in China. Obvious galling symptoms were observed on the root systems of fifteen species of TCM plants. Females were collected from diverse diseased TCM plants and subsequently identified at morphological and molecular level. Among the twenty diseased root samples collected, Meloidogyne hapla populations were identified in twelve samples (60%) and Meloidogyne incognita populations were identified in eight samples (40%). Among the fifteen species of diseased TCM plants, eight of them, namely Scutellaria baicalensis, Leonurus japonicus, Dioscorea zingiberensis, Cornus officinalis, Viola philippica, Achyranthes bidentata, Senecio scandens, and Plantago depressa were reported to be infected by Meloidogyne species for the first time. The host status of five species of TCM plants for two M. hapla isolates and one M. incognita isolate from TCM plants in this study was then evaluated. Differences in TCM plants' response to nematode infection were apparent when susceptibility was evaluated by the egg counts per gram fresh weight of root and the reproduction factor of the nematodes. Among the five species of TCM plants tested, Salvia miltiorrhiza and Gynostemma pentaphyllum were the most susceptible, while S. baicalensis and V. philippica were not considered suitable hosts for M. hapla or M. incognita.
ABSTRACT
Postmenopausal osteoporosis (PMO) is often accompanied by neuroendocrine changes in the hypothalamus, which closely associates with the microbial diversity, community composition, and intestinal metabolites of gut microbiota (GM). With the emerging role of GM in bone metabolism, a potential neuroendocrine signal neuropeptide Y (NPY) mediated brain-gut-bone axis has come to light. Herein, it is reported that exogenous overexpression of NPY reduced bone formation, damaged bone microstructure, and up-regulated the expressions of pyroptosis-related proteins in subchondral cancellous bone in ovariectomized (OVX) rats, but Y1 receptor antagonist (Y1Ra) reversed these changes. In addition, it is found that exogenous overexpression of NPY aggravated colonic inflammation, impaired intestinal barrier integrity, enhanced intestinal permeability, and increased serum lipopolysaccharide (LPS) in OVX rats, and Y1Ra also reversed these changes. Most importantly, NPY and Y1Ra modulated the microbial diversity and changed the community composition of GM in OVX rats, and thereby affecting the metabolites of GM (e.g., LPS) entering the blood circulation. Moreover, fecal microbiota transplantation further testified the effect of NPY-mediated GM changes on bone. In vitro, LPS induced pyroptosis, reduced viability, and inhibited differentiation of osteoblasts. The study demonstrated the existence of NPY-mediated brain-gut-bone axis and it might be a novel emerging target to treat PMO.
Subject(s)
Gastrointestinal Microbiome , Osteoporosis, Postmenopausal , Female , Humans , Rats , Animals , Neuropeptide Y/metabolism , Lipopolysaccharides , Hypothalamus/metabolismABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Uncaria rhynchophylla (Miq.) Miq. ex Havil. is a plant species that is routinely devoted in traditional Chinese medicine to treat central nervous system disorders. Rhynchophylline (Rhy), a predominant alkaloid isolated from Uncaria rhynchophylla (Miq.) Miq. ex Havil., has been demonstrated to reverse methamphetamine-induced (METH-induced) conditioned place preference (CPP) effects in mice, rats and zebrafish. The precise mechanism is still poorly understood, thus further research is necessary. AIM OF STUDY: This study aimed to investigate the role of miRNAs in the inhibitory effect of Rhy on METH dependence. MATERIALS AND METHODS: A rat CPP paradigm and a PC12 cell addiction model were established. Microarray assays were used to screen and identify the candidate miRNA. Behavioral assessment, real-time PCR, dual-luciferase reporter assay, western blotting, stereotaxic injection of antagomir/agomir and cell transfection experiments were performed to elucidate the effect of the candidate miRNA and intervention mechanism of Rhy on METH dependence. RESULTS: Rhy successfully reversed METH-induced CPP effect and the upregulated miR-181a-5p expression in METH-dependent rat hippocampus and PC12 cells. Moreover, suppression of miR-181a-5p by antagomir 181a reversed METH-induced CPP effect. Meanwhile, overexpression of miR-181a-5p by agomir 181a in combination with low-dose METH (0.5 mg/kg) elicited a significant CPP effect, which was blocked by Rhy through inhibiting miR-181a-5p. Finally, the result demonstrated that miR-181a-5p exerted its regulatory role by targeting γ-aminobutyric acid A receptor α1 (GABRA1) both in vivo and in vitro. CONCLUSION: This finding reveals that Rhy inhibits METH dependence via modulating the miR-181a-5p/GABRA1 axis, which may be a promising target for treatment of METH dependence.
Subject(s)
Amphetamine-Related Disorders , Methamphetamine , MicroRNAs , Rats , Mice , Animals , Receptors, GABA , Antagomirs , Zebrafish/genetics , Amphetamine-Related Disorders/genetics , Amphetamine-Related Disorders/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Methamphetamine/pharmacologyABSTRACT
BACKGROUND: Tanshinone I (Tan I) is known as one of the important active components in Salvia miltiorrhiza. In recent years, Tan I has received a substantial amount of attention from the research community for various studies being updated and has been shown to possess favorable activities including anti-oxidative stress, regulation of cell autophagy or apoptosis, inhibition of inflammation, etc. PURPOSE: To summarize the investigation progress on the anti-disease efficacy and effect mechanism of Tan I in recent years, and provide perspectives for future study on the active ingredient. METHOD: Web of Science and PubMed databases were used to search for articles related to "Tanshinone I" published from 2010 to 2022. Proteins or genes and signaling pathways referring to Tan I against diseases were summarized and classified along with its different therapeutic actions. Protein-protein interaction (PPI) analysis was then performed, followed by molecular docking between proteins with high node degree and Tan I, as well as bioinformactic analysis including GO, KEGG and DO enrichment analysis with the collected proteins or genes. RESULTS: Tan I shows multiple therapeutic effects, including protection of the cardiovascular system, anti-cancer, anti-inflammatory, anti-neurodegenerative diseases, etc. The targets (proteins or genes) affected by Tan I against diseases involve Bcl-2, Bid, ITGA2, PPAT, AURKA, VEGF, PI3K, AKT, PRK, JNK, MMP9, ABCG2, CASP3, Cleaved-caspase-3, AMPKα, PARP, etc., and the regulatory pathways refer to Akt/Nrf2, SAPK/JNK, PI3K/Akt/mTOR, JAK/STAT3, ATF-2/ERK, etc. What's more, AKT1, CASP3, and STAT3 were predicted as the key action targets for Tan I by PPI analysis combined with molecular docking, and the potential therapeutic effects mechanisms against diseases were also further predicted by bioinformatics analyses based on the reported targets, providing new insights into the future investigation and helping to facilitate the drug development of Tan I.
Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Caspase 3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking SimulationABSTRACT
High-silica phosphogypsum (PG) is a kind of industrial by-product with great utilization potential. However, it is difficult to reuse PG directly due to the related gangue minerals (e.g., SiO2), and thus efficient purification is required to allow its further applications. Herein, a typical high-silica phosphogypsum waste was purified by a new "reverse-direct flotation" method. The organic matters and fine slimes were removed by reverse flotation, and then, the silica impurity was removed by direct flotation. Via the closed-circuit flotation process, the whiteness of the PG concentrate is improved from 33.23 to 63.42, and the purity of gypsum in the PG concentrate increases from 83.90% to 96.70%, with a gypsum recovery of 85%. Additionally, the content of SiO2 is significantly reduced from 11.11% to 0.07%. In-depth investigations suggest that the difference in the floatability of gypsum and quartz is prominently intensified by flotation reagents at pH = 2-2.5, and thus leads to good desilication performance. Further characteristics of the PG concentrate prove that impurities have been well removed, and the PG concentrate meets the requirement of related standards for gypsum building materials. The flotation method reported here paves the way for the purification of high-silica phosphogypsum, which can be extended to the purification and value-added reutilization of other industrial solid wastes.
Subject(s)
Calcium Sulfate , Silicon Dioxide , Calcium Sulfate/chemistry , Industrial Waste/analysis , Phosphorus/chemistryABSTRACT
We report the synthesis, characterization, and iodine capture application of a novel thorium-organic nanotube, TSN-626, [Th6O4(OH)4(C6H4NO2)7(CHO2)5(H2O)3]·3H2O. The classification as a metal-organic nanotube (MONT) distinguishes it as a rare and reduced dimensionality subset of metal-organic frameworks (MOFs); the structure is additionally hallmarked by low node connectivity. TSN-626 is composed of hexameric thorium secondary building units and mixed O/N-donor isonicotinate ligands that demonstrate selective ditopicity, yielding both terminating and bridging moieties. Because hard Lewis acid tetravalent metals have a propensity to bind with electron donors of rival hardness (e.g., carboxylate groups), such Th-N coordination in a MOF is uncommon. However, the formation of key structural Th-N bonds in TSN-626 cap some of the square antiprismatic metal centers, a position usually occupied by terminal water ligands. TSN-626 was characterized by using complementary analytical and computational techniques: X-ray diffraction, vibrational spectroscopy, N2 physisorption isotherms, and density functional theory. TSN-626 satisfies design aspects for the chemisorption of iodine. The synergy between accessibility through pores, vacancies at the metal-oxo nodes, and pendent N-donor sites allowed a saturated iodine loading of 955 mg g-1 by vapor methods. The crystallization of TSN-626 diversifies actinide-MOF linker selection to include soft electron donors, and these Th-N linkages can be leveraged for the investigation of metal-to-ligand bonding and unconventional topological expressions.
ABSTRACT
Salvia miltiorrhiza is a perennial herbaceous plant for traditional Chinese medicine. It has been extensively applied for many hundred years to treat various diseases (Su et al. 2015). It is also a kind of important cash crop that is widely cultivated in southern Shaanxi province. In June of 2021, in a field in Luonan County, Shaanxi Province, some S. miltiorrhiza plants with stunting and leaf wilting symptoms were observed. The diseased plants exhibited a large number of globular galling on the secondary and tertiary roots. The symptoms were typical of infection by root-knot nematodes. Population densities of second-stage juveniles (J2s) ranged from 330 to 650 per 100 cm3. To identify the species of the root-knot nematodes, J2s and males were collected from the soil in the root zone, and females were isolated from diseased roots. The perineal patterns of females (n = 12) were round-shaped, with low dorsal arches, obvious lateral lines, and characteristic small punctations near anus. Morphological measurements of females (n = 20) included body length (L) = 565.25 ± 33.9 (503.35 - 632.47) µm, body width (BW) = 420.00 ± 21.28 (378.27 - 452.51) µm, stylet = 11.11 ± 0.73 (10.05-12.29) µm, dorsal pharyngeal gland orifice to stylet base (DGO) = 4.69 ± 0.45 (3.82-5.32) µm, vulval slit length = 21.1 ± 1.33 (18.38-22.96) µm, and vulval slit to anus distance = 15.76 ± 1.24 (13.38-17.45) µm. The morphological characters of males (n = 7): L = 1098.14 ± 82.99 (962.83-1193.87) µm, BW = 28.44 ± 1.18 (26.59-29.83) µm, stylet = 18.27 ± 0.97 (16.57-19.28) µm, DGO = 4.89 ± 0.62 (3.82-5.68) µm, and spicule length = 24.04 ± 1.80 (21.30-26.71) µm. The key morphometrics of J2s: L = 380.24 ± 18.24 (354.43-423.13) µm, BW = 13.94 ± 0.70 (12.88-15.34) µm, stylet = 11.82 ± 0.49 (10.96-12.61) µm, DGO = 3.68 ± 0.42 (3.09-4.56) µm, tail length = 55.42 ± 5.81 (46.97-67.03) µm, and hyaline tail terminus = 13.79 ± 1.24 (12.0-16.51) µm. These morphological characteristics are consistent with Meloidogyne hapla as described by Whitehead (1968). Ten individual females were transferred to ten different tubes for DNA extraction. The DNA extraction followed the method described by Htay et al. (2016). The species-specific primers JMV1 (5'-GGATGGCGTGCTTTCAAC-3') and JMV (5'-AAAAATCCCCTCGAAAAATCCACC-3') were used for the identification of M. hapla (Adam et al. 2007). A single 440 bp fragment was amplified by this pair of primers, confirming their identities as M. hapla. To confirm species identification, the ITS region was amplified using the primers 18S/26S (5'-TTGATTACGTCCCTGCCCTTT-3'/5'-TTTCACTCGCCGTTACTAAGG-3') (Vrain et al. 1992). The sequence from the ITS region was 768 bp (GenBank Accession No. OM049198) and was 100% identical to the sequences of M. hapla (GenBank Accession Nos. MT249016 and KJ572385). The mitochondrial DNA (mtDNA) region between COII and the lRNA gene was amplified using primers C2F3 (5'-GGTCAATGTTCAGAAATTTGTGG-3') and 1108 (5'-TACCTTTGACCAATCACGCT-3') (Powers and Harris, 1993). A fragment of 529 bp was obtained and the sequence (GenBank Accession No. OM055828) was 100% identical to the known sequence of M. hapla from Taiwan (GenBank Accession No. KJ598134). An infection test was conducted in greenhouse conditions. Six 2-month-old S. miltiorrhiza plants were individually maintained in 12-cm diameter, 10-cm deep plastic pots containing sterilized soil and each plant was inoculated with 3000 J2s hatched from egg masses of collected M. hapla samples. Two non-inoculated S. miltiorrhiza plants served as negative controls. After 60 days, inoculated plants exhibited galled roots similar to those observed in the field. Many galls (61.33 ± 8.52) and egg masses (26.17 ± 4.79) were found on each root system. The nematode reproduction factor (RF = final population/initial population) was 4.5. No symptoms were observed in control plants. The nematode was reisolated from root tissue and identified to be M. hapla with its sequence-specific primers JMV1/JMV. These results confirmed that the nematode population could infect S. miltiorrhiza. To our knowledge, this is the first time of natural infection of S. miltiorrhiza with M. hapla in China. Including S. miltiorrhiza, the medicinal ingredients of many traditional Chinese herbal medicines were extracted from the roots of the plants. The infection of root-knot nematode will cause a serious decline in the quality of Chinese medicinal materials. Therefore, it is necessary to identify the species of root-knot nematode in different Chinese herbal medicines.
ABSTRACT
Methamphetamine (Meth) is a highly addictive substance and the largest drug threat across the globe. There is evidence to indicate that Meth use has serious damage on central nervous system (CNS) and heart in several animal and human studies. However, the connection in the process of Meth addiction between these two systems has not been determined. Emerging data suggest that extracellular vesicles (EVs) carrying behavior-altering microRNA (miRNAs) play a crucial role in cell communication between CNS and peripheral system. Rhynchophylline (Rhy), an antiaddictive alkaloid, was used to protect the brain and heart from Meth-induced damage, which has caught our attention. Here, we used Meth-dependent conditioned place preference (CPP) animal model and cell model to verify the protective effect of Rhy-treated EVs. Further, small RNA sequencing analysis, qPCR, dual-luciferase reporter assay, and transfection test were used to identify the key EVs-encapsulated miRNAs, isolated from cultured H9c2 cells with different treatments, involved in the therapeutic effect and the underlying mechanisms of Rhy. The results demonstrate that Rhy-treated EVs exert protective effects against Meth dependence through the pathway of miR-183-5p-neuregulin-1 (NRG1). Our collective findings provide novel insights into the roles of EVs miRNAs in Meth addiction and support their potential application in the development of novel therapeutic approaches.
ABSTRACT
OBJECTIVE: To evaluate the clinical effect and safety of transurethral 180 W front-firing GreenLight laser vaporization of the prostate (PVP) in the treatment of benign prostatic hyperplasia (BPH). METHODS: A total of 61 BPH patients underwent 180W front-firing GreenLight laser PVP (n = 30, the PVP group) or transurethral plasmakinetic resection of the prostate (n = 31, the control group) from March to December 2019. We collected the pre-, intra- and post-operative clinical data and compared them between the two groups of patients. RESULTS: Operations were successfully completed in all the cases with no blood transfusion or serious complications. Compared with the controls, the patients of the PVP group showed remarkably less intra-operative blood loss (ï¼»62.3 ± 15.9ï¼½ vs ï¼»48.8 ± 9.6ï¼½ ml, P < 0.05), shorter operation time (ï¼»75.0 ± 9.9ï¼½ vs ï¼»57.5 ± 19.0ï¼½ min, P < 0.05), postoperative bladder lavage time (ï¼»64.4 ± 10.5ï¼½ vs ï¼»25.2 ± 11.5ï¼½ h, P < 0.05), catheter-indwelling time (ï¼»5.1 ± 0.5ï¼½ vs ï¼»2.5 ± 0.5ï¼½ d, P < 0.05) and hospitalization time (ï¼»7.3 ± 1.7ï¼½ vs ï¼»4.1 ± 0.6ï¼½ d, P < 0.05), and a lower incidence of postoperative hematuria (12.9% ï¼»4/31ï¼½ vs 0% ï¼»0/30ï¼½, P < 0.05). No statistically significant differences, however, were found between the two groups in the incidence rates of capsular perforation, transurethral resection syndrome (TURS), urinary incontinence, urethral stricture and post-extubation urinary retention. Significant improvement was observed in IPSS, QOL, Qmax and PVR in both groups post-operatively (P < 0.05). CONCLUSIONS: Compared with transurethral plasmakinetic resection of the prostate, 180W front-firing GreenLight laser PVP, with the advantages of less bleeding, shorter catheter-indwelling time and faster recovery, is safer and more effective for the treatment of BPH, with no need for drug withdrawal for those taking anticoagulants, and especially applicable to the elderly and high-risk patients.
Subject(s)
Laser Therapy , Prostatic Hyperplasia , Aged , Humans , Male , Prostatic Hyperplasia/surgery , Quality of Life , Transurethral Resection of Prostate , Treatment OutcomeABSTRACT
The ideal bone repair material should firstly recognize and recruit osteoblast precursor cells to initiate the repair process, then promote the differentiation of osteoblasts and accelerate the mineralization of the extracellular matrix (ECM). Here, a bioinspired staged bone regeneration strategy which loads bone morphogenetic protein2 (BMP2 )-modified black phosphorus (BP@BMP2 ) nanosheets to a polylactic acid (PLLA) electrospun fibrous scaffold, with a combination of recruiting osteoblast precursor cells and biomineralization properties for bone regeneration, is constructed successfully by micro-sol electrospinning technique. BP, acting as carriers, can not only provide a negative surface and a strong BMP2 loading ability but can also promote biomineralization in a 3D manner on the electrospun fibrous scaffold, while the BMP2 is to target osteoblast precursor cells for recruitment and osteogenesis differentiation, which endows BP@BMP2 nanosheets with staged bone regeneration ability. Furthermore, the in vitro and in vivo data showed that the BP@BMP2 loaded electrospun fibrous scaffold have good biocompatibility and a strong osteogenesis ability resulting in rapid new bone tissue regeneration. Altogether, this newly developed bioinspired BMP2 -modified BP electrospun fiber with staged bone regeneration properties via recruiting osteoblast precursor cells to the bone injured site and accelerating biomineralization can be a promising approach in physiologic bone repair.
Subject(s)
Biomineralization , Tissue Scaffolds , Bone Morphogenetic Protein 2 , Bone Regeneration , Cell Differentiation , Osteoblasts , Osteogenesis , PhosphorusABSTRACT
INTRODUCTION: Rhynchophylline, as a traditional Chinese medicine, was used for the treatment of drug addiction. OBJECTIVE: To investigate miRNAs expression profile in the rat hearts of methamphetamine dependence and the intervention mechanisms of rhynchophylline. MATERIALS AND METHODS: This study detected the expression profile of miRNAs in the methamphetamine-induced rat hearts by microarray and verified the expression of miR-133a-5P and Rho-associated, coiled-coil containing protein kinase 2 (ROCK2) protein. RESULTS: After conditioned place preference training, methamphetamine significantly increased the time spent in the drug-paired compartment, while rhynchophylline and MK-801 could reduce the time. Cluster analysis results of miRNAs showed that compared with the control group, the expression of miR-133a-5p in methamphetamine-induced rat hearts was decreased significantly; rhynchophylline could significantly increase the expression of miR-133a-5p. The result was verified by real-time polymerase chain reaction. The results of target gene predictive software and related research showed that ROCK2 protein may be the target gene of miR-133a-5p. The immunohistochemistry results of heart tissues showed that the expression of ROCK2 protein was significantly upregulated in the methamphetamine group and downregulate in the rhynchophylline group; the difference between the MK-801 group and the methamphetamine group was not significant. The result of western blot was consistent with the immunohistochemistry. CONCLUSION: The active ingredient of Chinese herbal medicine rhynchophylline can effectively inhibit the formation of methamphetamine-dependent conditional place preference (CPP) effect in rats to some extent. MiR-133a-5p may participate in the cardioprotective effects of CPP rats by targeting ROCK2.
Subject(s)
Amphetamine-Related Disorders/drug therapy , Heart/drug effects , Methamphetamine/toxicity , MicroRNAs/metabolism , Oxindoles/pharmacology , rho-Associated Kinases/genetics , Amphetamine-Related Disorders/genetics , Amphetamine-Related Disorders/metabolism , Amphetamine-Related Disorders/prevention & control , Animals , Behavior, Animal/drug effects , Cardiotonic Agents , Conditioning, Operant/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Gene Expression/drug effects , Male , Myocardium/metabolism , Oxindoles/therapeutic use , Rats , Rats, Sprague-Dawley , rho-Associated Kinases/metabolismABSTRACT
Highly-connected and minimal edge-transitive nets (with one or two kinds of edge) can be regarded as ideal blueprints for the rational design and construction of metal-organic frameworks (MOFs). Here we report and affirm the prominence of highly-connected nets as suitable targets in reticular chemistry for the design and synthesis of MOFs. Of special interest are augmented highly-connected binodal edge-transitive nets embedding a unique and precise positioning and connectivity of the net vertex figures, regarded as net-coded building units (net-cBUs). Explicitly, a definite net-cBU encompasses precise geometrical information that codes a selected net uniquely and matchlessly, a compelling perquisite for the rational design of MOFs. Interestingly, the double six-membered ring (d6R) building unit offers great potential to be used as a net-cBU for the deliberate reticulation of the sole two edge-transitive nets with a vertex figure as a d6R, namely the (4,12)-coordinated shp net (square and hexagonal prism) and the (6,12)-coordinated alb net (aluminium diboride, hexagonal prism and trigonal prism). We envisioned and proposed various MOF structures based on the derived shp and alb nets. Gaining access to the requisite net-cBUs is essential for the successful practice of reticular chemistry; correspondingly organic and inorganic chemistries were deployed to afford concomitant molecular building blocks (MBBs) with the looked-for shape and connectivity. Practically, the combination of the 12-connected (12-c) rare-earth (RE) polynuclear, points of extension matching the 12 vertices of the hexagonal prism (d6R) with a 4-connected tetracarboxylate ligand or a 6-connected hexacarboxylate ligand afforded the targeted shp-MOF or alb-MOF, respectively. A dodecacarboxylate ligand can be conceived as, and is shown to be, a compatible 12-c MBB, plausibly affording the positioning of the carbon centers of the twelve carboxylate groups on the vertices of the desired hexagonal prism building unit, and combined with the complementary 4-c copper paddlewheel [Cu2(O2C-)4] cluster or 6-c metal trinuclear [M3O(O2C-)6] clusters/zinc tetranulcear [Zn4O(O2C-)6] clusters to credibly afford the construction of new MOF structures with underlying topologies based on derived shp and alb nets.
ABSTRACT
Highly connected and edge-transitive nets are of prime importance in crystal chemistry and are regarded as ideal blueprints for the rational design and construction of metal-organic frameworks (MOFs). We report the design and synthesis of highly connected MOFs based on reticulation of the sole two edge-transitive nets with a vertex figure as double six-membered-ring (d6R) building unit, namely the (4,12)-coordinated shp net (square and hexagonal-prism) and the (6,12)-coordinated alb net (aluminum diboride, hexagonal-prism and trigonal-prism). Decidedly, the combination of our recently isolated 12-connected (12-c) rare-earth (RE) nonanuclear [RE9(µ3-OH)12(µ3-O)2(O2C-)12] carboxylate-based cluster, points of extension matching the 12 vertices of hexagonal-prism d6R, with 4-connected (4-c) square porphyrinic tetracarboxylate ligand led to the formation of the targeted RE-shp-MOF. This is the first time that RE-MOFs based on 12-c molecular building blocks (MBBs), d6R building units, have been deliberately targeted and successfully isolated, paving the way for the long-awaited (6,12)-c MOF with alb topology. Indeed, combination of a custom-designed hexacarboxylate ligand with RE salts led to the formation of the first related alb-MOF, RE-alb-MOF. Intuitively, we successfully transplanted the alb topology to another chemical system and constructed the first indium-based alb-MOF, In-alb-MOF, by employing trinuclear [In3(µ3-O)(O2C-)6] as the requisite 6-connected trigonal-prism and purposely made a dodecacarboxylate ligand as a compatible 12-c MBB. Prominently, the dodecacarboxylate ligand was employed to transplant shp topology into copper-based MOFs by employing the copper paddlewheel [Cu2(O2C-)4] as the complementary square building unit, affording the first Cu-shp-MOF. We revealed that highly connected edge-transitive nets such shp and alb are ideal for topological transplantation and deliberate construction of related MOFs based on minimal edge-transitive nets.
ABSTRACT
Canaryseed is an important cereal crop in western Canada. The changes of the total phenolic content (TPC), antioxidant activities, phenolic acid profiles (free and bound) of canaryseed during germination were investigated in the present study. The growth properties also were investigated. Fresh weight, shoot length and root length increased, whereas dry mass of canaryseed decreased during germination. A 22.3% loss of dry matter was observed at 120h of germination. The total phenolic content and antioxidant activities of free and bound extracts showed a general trend of germinated seeds>raw seeds>soaked seeds. Free, bound and total phenolic content significantly increased 1042%, 120% and 741% at the end of germination as compared to raw seeds (p<0.05). DPPH, ABTS and ORAC assays were employed to evaluate the antioxidant activity of canaryseed. There were high correlations between total phenolic content and antioxidant activities. TPC and ORAC values showed the highest correlation (r=0.9984). Six phenolic acids in free phenolic extracts and seven phenolic acids in bound phenolic extracts were detected, respectively. Bound ferulic acid, the dominant phenolic acid in canaryseed, significantly increased during germination (p<0.05). Study showed that germination provided a new approach to further develop canaryseed as a functional food for human consumption.