Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Cosmet Dermatol ; 23(5): 1875-1883, 2024 May.
Article in English | MEDLINE | ID: mdl-38450923

ABSTRACT

BACKGROUND: As a traditional Chinese herbal medicine, Paeonia lactiflora Pall is rich in various active ingredients such as polysaccharides and total flavonoids while having ornamental value. It has potential application value in the development of food and cosmetics. OBJECTIVE: To study the in vitro efficacy of Paeonia lactiflora Pall seeds oil. METHODS: Firstly, the levels of linolenic acid and linoleic acid in Paeonia lactiflora Pall seeds oil were quantified using gas chromatography. The impact of Paeonia lactiflora Pall seeds oil on the proliferation rate of B16F10 cells was assessed through the CCK-8 method, while the melanin content of B16F10 cells was determined using the sodium hydroxide lysis method. The inhibitory effects of Paeonia lactiflora Pall seeds oil on elastase, collagenase and hyaluronidase were evaluated by biochemical techniques in vitro. Lastly, the hen's egg chorioallantoic membrane test (HET-CAM) was conducted to confirm the absence of eye irritation caused by Paeonia lactiflora Pall seeds oil. RESULTS: Paeonia lactiflora Pall seeds oil within a certain volume concentration range (0.5%-4%) had no effect on the proliferation of B16F10 cells. Paeonia lactiflora Pall seeds oil showed significant inhibition of elastase, collagenase and hyaluronidase. Notably, the highest concentration tested, 4% Paeonia lactiflora Pall seed oil, yielded the most pronounced outcomes without causing any irritation. CONCLUSION: A certain concentration of Paeonia lactiflora Pall seeds oil has a significant effect on decreasing the melanin content in B16F10 cells and inhibiting the activities of elastase, collagenase, and hyaluronidase, which can provide a reference for the development of pure natural cosmetics raw materials.


Subject(s)
Cell Proliferation , Collagenases , Hyaluronoglucosaminidase , Melanins , Paeonia , Pancreatic Elastase , Plant Oils , Seeds , Paeonia/chemistry , Seeds/chemistry , Animals , Mice , Melanins/analysis , Pancreatic Elastase/metabolism , Plant Oils/pharmacology , Cell Proliferation/drug effects , Collagenases/metabolism , Linoleic Acid/pharmacology , Linoleic Acid/analysis , Cosmetics/chemistry , Cosmetics/pharmacology , Melanoma, Experimental/drug therapy , alpha-Linolenic Acid/pharmacology , alpha-Linolenic Acid/analysis , Chorioallantoic Membrane/drug effects , Cell Line, Tumor , Chickens
2.
Skin Res Technol ; 30(2): e13582, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38282275

ABSTRACT

BACKGROUND: Increasing amounts of ultraviolet radiation occur as ozone depletion causes the earth's ozone layer to be destroyed, making antioxidant efficacy a research hotspot. Previous studies on plum blossom have mostly focused on Volatile Oils, Flavonoids, Phenylpropanoids, and other compounds, whereas few studies have focused on low molecular weight polypeptide (LMWP) of plum blossom. This research provides a reference for the deep processing and utilization of plum blossom. OBJECTIVES: (a) Plum blossom low molecular weight polypeptides protect HaCaT cells against UVB-induced oxidative damage in vitro and the underlying mechanism. (b) Improve the theoretical basis for the intense processing and utilization of plum blossom. METHODS: The safe concentration of LMWP and the survival rate of HaCaT cells were determined using the CCK-8 experiment. The fluorescence intensity of reactive oxygen species (ROS) was identified using the dichlorofluorescin diacetate (DCFH-DA) method; Superoxide dismutase (SOD) and malondialdehyde (MDA) concentrations were measured in ruptured cells; Western blot analysis was used to examine the expression levels of three proteins: nuclear factor E2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and benzoquinone oxidoreductase 1 (NQO-1). RESULTS: It was noted that a certain concentration of LMWP could promote cell proliferation. In oxidatively damaged HaCaT cells, SOD levels and survival rates were markedly reduced, but ROS and MDA levels were elevated. However, after treatment with LMWP, the survival rate of the cells and SOD levels were markedly increased, and the levels of ROS and MDA were markedly decreased. As shown by Western blotting, the model group exhibited lower levels of Nrf2, HO-1, and NQO-1 expression than the control group, whereas LMWP-treated cells had significantly higher levels of Nrf2, HO-1, and NQO-1 expression than their model-treated counterparts. CONCLUSIONS: LMMP can effectively protect HaCaT cells against oxidative damage in vitro induced by UVB, and the underlying mechanism is linked to the activation of the transcription factor Nrf2.


Subject(s)
HaCaT Cells , Prunus domestica , Humans , Reactive Oxygen Species , Prunus domestica/metabolism , Ultraviolet Rays/adverse effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Molecular Weight , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Peptides/metabolism
3.
World J Clin Cases ; 10(5): 1498-1507, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35211587

ABSTRACT

BACKGROUND: Almost all elderly patients with peritoneal metastatic gastric cancer (PGC) are unlikely to tolerate cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) and adjuvant chemotherapy. However, determining how to optimize the treatment strategy for such patients has always been a clinical problem. Both HIPEC and palliative adjuvant chemotherapy can benefit patients with PGC. Therefore, optimizing HIPEC and chemotherapy regimens has potential clinical value in reducing side effects, and improving treatment tolerance and clinical effectiveness. AIM: To explore the effect of HIPEC containing elemene, which is an anti-cancer component extracted in traditional Chinese herbal medicine, combined with reduced capecitabine and oxaliplatin (CapeOx) chemotherapy regimens, in elderly patients with PGC. METHODS: In the present study, 39 of 52 elderly PGC patients were included and assigned to different HIPEC treatment groups [lobaplatin group (group L) and mixed group (group M)] for analysis. Lobaplatin was used for all three HIPECs in group L. In group M, lobaplatin was used in the middle of the three HIPECs, and elemene was used for the first and third HIPEC. After HIPEC, patients received CapeOx chemotherapy. The incidence of complications (abdominal infection, lung infection, and urinary tract infection), myelosuppression, immune function (CD4/CD8 ratio), average length of hospital stay, and prognosis were compared between these two groups. RESULTS: There was no significant difference in the incidence of complications between the two groups during hospitalization (P > 0.05). Compared to patients in group M, patients in group L exhibited severe myelosuppression (P = 0.027) and increased length of hospital stay (P = 0.045). However, no overall survival benefit was observed in group M. Furthermore, the immune function of patients in group M was less affected (P < 0.001), when compared to that of patients in group L. The multivariate analysis suggested that the cycles of chemotherapy after perfusion significantly affected the prognosis of patients in both groups. CONCLUSION: Compared to the lobaplatin-based HIPEC regimen, the administration of elemene reduced the myelosuppression incidence in elderly PGC patients. The present study sheds light on the implementation of this therapeutic strategy for this set of patients.

4.
J Cosmet Dermatol ; 20(8): 2531-2537, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33355986

ABSTRACT

BACKGROUND: Incidence of skin pigmentation disorders has been on the rise globally. This calls for safer and more effective topical skin lightening and freckle-removing products. In this study, we hypothesized that Soluble Pearl Extract (SPE) may possess endothelin antagonizing compounds with good skin whitening effects. OBJECTIVES: (a) To determine the effect and mechanisms of SPE on ET-1-treated B16 melanoma cells. (b) To explore the cytotoxic effects of SPE on B16 melanoma cells. METHODS: CCK-8 assay was performed to determine how SPE and ET-1 affect the proliferation rate of B16 melanoma cells, the NaOH lysis assay was conducted to quantify the content of melanin while the tyrosinase activity was determined by DOPA oxidation test. The mRNA and protein expression levels of TYR and TRP-1 were determined by qRT-PCR assay and Western blot assay, respectively. RESULTS: We found that SPE at 0.1 and 1 µg/mL concentrations has no effect on the proliferation of the cells and 10 nmol/L ET-1 promoted B16 melanoma cells proliferation. Notably, B16 melanoma cells treated with 10 nmol/L ET-1 exhibited significantly higher melanin synthesis, tyrosinase activity, TYR, and TRP-1 mRNA expression levels compared with untreated cells. Of note, the effects of 10 nmol/L ET-1 treatment were abolished with SPE in a dose-dependent manner. CONCLUSIONS: SPE inhibits endothelin thereby safely and effectively lightening lightens the skin by antagonizing endothelin. Moreover, SPE is safe and effective.


Subject(s)
Melanoma, Experimental , Monophenol Monooxygenase , Animals , Endothelins , Melanins , Melanoma, Experimental/drug therapy , Monophenol Monooxygenase/genetics , Plant Extracts
5.
Int J Mol Sci ; 21(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987934

ABSTRACT

Autotetraploid rice is a useful germplasm for polyploid rice breeding; however, low seed setting is a major hindrance for its utilization. Here, we reported the development of a new tetraploid rice, Huoduo1 (H1), which has the characteristic of high fertility, from crossing generations of autotetraploid rice. Cytological observations displayed the high fertility of the pollen (95.62%) in H1, a lower percentage of pollen mother cell (PMC) abnormalities, and stable chromosome configurations during the pollen development process compared with its parents. Using RNA-seq analysis, we detected 440 differentially expressed genes (DEGs) in H1 compared with its parents. Of these DEGs, 193 were annotated as pollen fertility-related genes, and 129 (~66.8%) exhibited significant up-regulation in H1 compared with the parents, including three environmentally sensitive genic male sterility genes (TMS9-1, TMS5, and CSA), one meiosis gene (RAD51D), and three tapetal-related genes (MIL2, OsAP25, and OsAP37), which were validated by qRT-PCR in this study. Two genes, TMS9-1 and TMS5, were knocked out using CRISPR/Cas9 technology, and their mutants displayed low fertility and the abnormal development of pollen. Our findings provide evidence for the regulatory mechanisms of fertility in tetraploid rice and indicated that the up-regulation of pollen fertility-related genes may contribute to the high fertility in new tetraploid rice.


Subject(s)
Oryza/genetics , Pollen/physiology , Tetraploidy , Transcriptome , Fertility/genetics , Gene Expression Regulation, Plant , Genes, Plant , Oryza/physiology
6.
Mol Genet Genomics ; 293(6): 1407-1420, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29974305

ABSTRACT

Autotetraploid rice is a useful germplasm that has four chromosome sets and strong biological advantages; however, low fertility limits its commercial utilization. Little information is available about the DNA variation and differential gene expressions associated with low fertility in autotetraploid rice. In the present study, 81 SNPs and 182 InDels were identified in T449 (an autotetraploid rice line with low fertility) compared to E249 (diploid counterpart) by whole-genome re-sequencing. We detected only three non-synonymous SNPs and six large-effect InDels, which were associated with three and six genes, respectively. A total of 75 meiosis-related differentially expressed genes were detected during the meiosis stage by transcriptome analysis, including OsMTOPVIB, which is essential for meiotic DSB formation, and OsMOF, which takes part in homologous chromosome pairing and synapsis. Approximately 20.69% lagging chromosome at metaphase I and 4.65% abnormal tetrad were observed in T449. Moreover, transcriptome analysis revealed down-regulation of a sucrose transporter (OsSUT5) and two monosaccharide transporters (OsMST1 and OsMST8) in T449 at the single microspore stage, and their expression levels were verified by qRT-PCR. Cytological observation of saccharide distribution showed abnormal accumulation of saccharides in T449 and the contents of fructose and glucose were markedly higher in T449 than E249 at the single microspore stage. Our results suggested that polyploidy not only induces abrupt expression changes in the meiosis-related genes that lead to abnormal chromosome behavior, but also causes changes in the saccharide distribution and expression patterns of saccharide-related genes, which jointly causes sterility in the autotetraploid rice.


Subject(s)
Carbohydrate Metabolism/genetics , Meiosis/genetics , Oryza/cytology , Oryza/genetics , Plant Infertility/genetics , Pollen , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Plant , INDEL Mutation , Oryza/growth & development , Oryza/metabolism , Plants, Genetically Modified , Pollen/cytology , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Polymorphism, Single Nucleotide , Polyploidy , Tetraploidy
7.
BMC Genomics ; 18(1): 129, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28166742

ABSTRACT

BACKGROUND: Partial pollen and embryo sac sterilities are the two main reasons for low fertility in autotetraploid rice. Our previous study revealed that small RNAs changes may associate with pollen fertility in autotetraploid rice. However, knowledge on comparative analysis between the development of pollen and embryo sac by small RNAs in autotetraploid rice is still unknown. In the present study, WE-CLSM (whole-mount eosin B-staining confocal laser scanning microscopy) and high-throughput sequencing technology was employed to examine the cytological variations and to analyze small RNAs changes during pollen and embryo sac development in autotetraploid rice compared with its diploid counterpart. RESULTS: A total of 321 and 368 differentially expressed miRNAs (DEM) were detected during pollen and embryo sac development in autotetraploid rice, respectively. Gene Ontology enrichment analysis on the targets of DEM associated with embryo sac and pollen development revealed 30 prominent functional gene classes, such as cell differentiation and signal transduction during embryo sac development, while only 7 prominent functional gene classes, such as flower development and transcription factor activity, were detected during pollen development in autotetraploid rice. The expression levels of 39 DEM, which revealed interaction with meiosis-related genes, showed opposite expression patterns during pollen and embryo sac development. Of these DEM, osa-miR1436_L + 3_1ss5CT and osa-miR167h-3p were associated with the female meiosis, while osa-miR159a.1 and osa-MIR159a-p5 were related with the male meiosis. 21 nt-phasiRNAs were detected during both pollen and embryo sac development, while 24 nt-phasiRNAs were found only in pollen development, which displayed down-regulation in autotetraploid compared to diploid rice and their spatial-temporal expression patterns were similar to osa-miR2275d. 24 nt TEs-siRNAs were found to be up-regulated in embryo sac but down-regulated in pollen development. CONCLUSION: The above results not only provide the small RNAs changes during four landmark stages of pollen and embryo sac development in autotetraploid rice but also have identified specifically expressed miRNAs, especially meiosis-related miRNAs, pollen-specific-24 nt-phasiRNAs and TEs-siRNAs in autotetraploid rice. Together, these findings provide a foundation for understanding the effect of polyploidy on small RNAs expression patterns during pollen and embryo sac development that may lead to different abnormalities in autotetraploid rice.


Subject(s)
Gene Expression Profiling , Oryza/growth & development , Oryza/genetics , Pollen/growth & development , RNA, Small Untranslated/genetics , Seeds/growth & development , Tetraploidy , Meiosis/genetics , MicroRNAs/genetics , Oryza/cytology , Pollen/genetics , RNA, Small Interfering/genetics , Seeds/genetics
8.
Plant Physiol ; 169(4): 2700-17, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26511913

ABSTRACT

Intersubspecific autotetraploid rice (Oryza sativa ssp. indica × japonica) hybrids have greater biological and yield potentials than diploid rice. However, the low fertility of intersubspecific autotetraploid hybrids, which is largely caused by high pollen abortion rates, limits their commercial utility. To decipher the cytological and molecular mechanisms underlying allelic interactions in autotetraploid rice, we developed an autotetraploid rice hybrid that was heterozygous (S(i)S(j)) at F1 pollen sterility loci (Sa, Sb, and Sc) using near-isogenic lines. Cytological studies showed that the autotetraploid had higher percentages (>30%) of abnormal chromosome behavior and aberrant meiocytes (>50%) during meiosis than did the diploid rice hybrid control. Analysis of gene expression profiles revealed 1,888 genes that were differentially expressed between the autotetraploid and diploid hybrid lines at the meiotic stage, among which 889 and 999 were up- and down-regulated, respectively. Of the 999 down-regulated genes, 940 were associated with the combined effect of polyploidy and pollen sterility loci interactions (IPE). Gene Ontology enrichment analysis identified a prominent functional gene class consisting of seven genes related to photosystem I (Gene Ontology 0009522). Moreover, 55 meiosis-related or meiosis stage-specific genes were associated with IPE in autotetraploid rice, including Os02g0497500, which encodes a DNA repair-recombination protein, and Os02g0490000, which encodes a component of the ubiquitin-proteasome pathway. These results suggest that polyploidy enhances epistatic interactions between alleles of pollen sterility loci, thereby altering the expression profiles of important meiosis-related or meiosis stage-specific genes and resulting in high pollen sterility.


Subject(s)
Meiosis/genetics , Oryza/genetics , Plant Infertility/genetics , Pollen/genetics , Polyploidy , Alleles , Biomass , Chromosomes, Plant/genetics , Cluster Analysis , Diploidy , Epistasis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Gene Regulatory Networks/genetics , Genes, Plant/genetics , Hybridization, Genetic , Oligonucleotide Array Sequence Analysis/methods , Oryza/metabolism , Protein Interaction Maps/genetics , Reverse Transcriptase Polymerase Chain Reaction
9.
Plant Reprod ; 27(4): 181-96, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25262386

ABSTRACT

Autotetraploid rice has greater genetic variation and higher vigor than diploid rice, but low pollen fertility is one of the major reasons for low yield of autotetraploid rice. Very little is known about the molecular mechanisms of low pollen fertility of autotetraploid rice. In this study, cytological observations and microarray analysis were used to assess the genetic variation during pollen development in autotetraploid and diploid rice. Many abnormal chromosome behaviors, such as mutivalents, lagged chromosomes, asynchronous cell division, and so on, were found during meiosis in autotetraploid. Microsporogenesis and microgametogenesis in autotetraploid rice was similar to diploid rice, but many different kinds of abnormalities, including microspores degeneration, multi-aperture, and abnormal cell walls, were found in autotetraploid rice. Compared with diploid rice, a total of 1,251 genes were differentially expressed in autotetraploid rice in pollen transcriptome, among them 1,011 and 240 genes were up-regulated and down-regulated, respectively. 124 and 6 genes were co-up-regulated and co-down-regulated during three pollen development stages, respectively. These results suggest that polyploidy induced up-regulation for most of the genes during pollen development. Quantitative RT-PCR was done to validate 12 differentially expressed genes selected from functional categories based on the gene ontology analysis. These stably expressed genes not only related to the pollen development genes, but also involved in cell metabolism, cell physiology, binding, catalytic activity, molecular transducer activity, and transcription regulator activity. The present study suggests that differential expression of some key genes may lead to complex gene regulation and abnormal pollen development in autotetraploid rice.


Subject(s)
Gene Expression Regulation, Plant , Oryza/growth & development , Plant Proteins/genetics , Pollen/growth & development , Transcriptome , Chromosomes, Plant/genetics , Diploidy , Down-Regulation , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genetic Variation , Meiosis , Oligonucleotide Array Sequence Analysis , Oryza/cytology , Oryza/genetics , Phenotype , Plant Proteins/metabolism , Pollen/cytology , Pollen/genetics , Species Specificity , Tetraploidy , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL