Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 18(23): e2200037, 2022 06.
Article in English | MEDLINE | ID: mdl-35396772

ABSTRACT

The morphologies of micromaterials play a key role in their functionality and efficiency across a broad range of applications, including catalysis, environmental remediation, and drug delivery. However, the relationships between the morphologies and performances of micromaterials still need to be further understood, to guide the rational design of effective morphologies for specific applications. A pollen-derived microstructure library containing multivariate morphological characterization and functional performance data is proposed and constructed here. Systematic multivariate correlation analysis is conducted to extract the key morphological factors influencing the photocatalytic and adsorption efficiencies, to reveal the morpho-performance relationships of pollen-derived microstructures. Subsequently, a chrysanthemum-derived microstructure is selected as a typical candidate; it features a unique morphology suitable for advanced photocatalysis and dynamic environmental remediation. To summarize, the construction of a pollen-derived microstructure library offers a powerful tool for studying the morpho-performance relationships of micromaterials; this can provide significant guidance and inspiration for the rational design of micro/nanomaterials for numerous applications.


Subject(s)
Environmental Restoration and Remediation , Nanostructures , Adsorption , Catalysis , Nanostructures/chemistry , Pollen
2.
Plant Mol Biol ; 61(4-5): 799-815, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16897494

ABSTRACT

The cleavage and polyadenylation specificity factor (CPSF) is an important multi-subunit component of the mRNA 3'-end processing apparatus in eukaryotes. The Arabidopsis genome contains five genes encoding CPSF homologues (AtCPSF160, AtCPSF100, AtCPSF73-I, AtCPSF73-II and AtCPSF30). These CPSF homologues interact with each other in a way that is analogous to the mammalian CPSF complex or their yeast counterparts, and also interact with the Arabidopsis poly(A) polymerase (PAP). There are two CPSF73 like proteins (AtCPSF73-I and AtCPSF73-II) that share homology with the 73 kD subunit of the mammalian CPSF complex. AtCPSF73-I appears to correspond to the functionally characterized mammalian CPSF73 and its yeast counterpart. AtCPSF73-II was identified as a novel protein with uncharacterized protein homologues in other multicellular organisms, but not in yeast. Both of the AtCPSF73 proteins are targeted in the nucleus and were found to interact with AtCPSF100. They are also essential since knockout or knockdown mutants are lethal. In addition, the expression level of AtCPSF73-I is critical for Arabidopsis development because overexpression of AtCPSF73-I is lethal. Interestingly, transgenic plants carrying an additional copy of the AtCPSF73-I gene, that is, the full-length cDNA under the control of its native promoter, appeared normal but were male sterile due to delayed anther dehiscence. In contrast, we previously demonstrated that a mutation in the AtCPSF73-II gene was detrimental to the genetic transmission of female gametes. Thus, two 73 kD subunits of the AtCPSF complex appear to have special functions during flower development. The important roles of mRNA 3'-end processing machinery in modulating plant development are discussed.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cleavage And Polyadenylation Specificity Factor/chemistry , Cleavage And Polyadenylation Specificity Factor/metabolism , Arabidopsis/cytology , Flowers/anatomy & histology , Flowers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Molecular Sequence Data , Molecular Weight , Phylogeny , Pollen/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL