Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant Physiol ; 189(4): 2110-2127, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35567496

ABSTRACT

The formation of diploid gametes through chromosome doubling is a major mechanism of polyploidization, diversification, and speciation in plants. Unfavorable climate conditions can induce or stimulate the production of diploid gametes during meiosis. Here, we demonstrated that heat shock stress (38°C for 3 or 6 h) induced 2n pollen formation, and we generated 42 triploids derived from heat shock-induced 2n pollen of Populus canescens. Meiotic analysis of treated pollen mother cells revealed that induced 2n pollen originated from the complete loss of meiosis II (MII). Among the 42 triploids, 38 triploids derived from second division restitution (SDR)-type 2n pollen and 4 triploids derived from first division restitution-type 2n pollen were verified using simple sequence repeats (SSR) molecular markers. Twenty-two differentially expressed genes related to the cell cycle were identified and characterized by expression profile analysis. Among them was POPTR_0002s08020g (PtCYCA1;2), which encodes a type A Cyclin CYCA1;2 that is required for the meiosis I (MI) to MII transition. After male flower buds were exposed to heat shock, a significant reduction was detected in PtCYCA1;2 expression. We inferred that the failure of MI-to-MII transitions might be associated with downregulated expression of PtCYCA1;2, leading to the formation of SDR-type 2n pollen. Our findings provide insights into mechanisms of heat shock-induced 2n pollen formation in a woody plant and verify that sensitivity to environmental stress has evolutionary importance in terms of polyploidization.


Subject(s)
Meiosis , Triploidy , Diploidy , Heat-Shock Response/genetics , Meiosis/genetics , Pollen/genetics
SELECTION OF CITATIONS
SEARCH DETAIL