Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681683

ABSTRACT

Age-related macular degeneration (AMD) is an eye disease that is characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. At an advanced stage, a blind spot grows in the center of vision, severely handicapping patients with this degenerative condition. Despite therapeutic advances thanks to the use of anti-VEGF, many resistance mechanisms have been found to accentuate the visual deficit. In the present study, we explored whether supplementation with Resvega®, a nutraceutical formulation composed of omega-3 fatty acids and resveratrol, a well-known polyphenol in grapes, was able to counteract laser-induced choroidal neovascularization (CNV) in mice. We highlight that Resvega® significantly reduced CNV in mice compared with supplementations containing omega-3 or resveratrol alone. Moreover, a proteomic approach confirmed that Resvega® could counteract the progression of AMD through a pleiotropic effect targeting key regulators of neoangiogenesis in retina cells in vivo. These events were associated with an accumulation of resveratrol metabolites within the retina. Therefore, a supplementation of omega-3/resveratrol could improve the management or slow the progression of AMD in patients with this condition.


Subject(s)
Choroidal Neovascularization/prevention & control , Dietary Supplements , Fatty Acids, Omega-3/pharmacology , Macular Degeneration/prevention & control , Resveratrol/pharmacology , Animals , Choroidal Neovascularization/diet therapy , Disease Models, Animal , Fatty Acids, Omega-3/therapeutic use , Female , Macular Degeneration/diet therapy , Macular Degeneration/pathology , Mice , Proteomics , Resveratrol/therapeutic use
2.
Mol Cell Proteomics ; 14(4): 870-81, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25616868

ABSTRACT

Upon entry into mammalian host cells, the pathogenic bacterium Francisella must import host cell arginine to multiply actively in the host cytoplasm. We identified and functionally characterized an arginine transporter (hereafter designated ArgP) whose inactivation considerably delayed bacterial phagosomal escape and intracellular multiplication. Intramacrophagic growth of the ΔargP mutant was fully restored upon supplementation of the growth medium with excess arginine, in both F. tularensis subsp. novicida and F. tularensis subsp. holarctica LVS, demonstrating the importance of arginine acquisition in these two subspecies. High-resolution mass spectrometry revealed that arginine limitation reduced the amount of most of the ribosomal proteins in the ΔargP mutant. In response to stresses such as nutritional limitation, repression of ribosomal protein synthesis has been observed in all kingdoms of life. Arginine availability may thus contribute to the sensing of the intracellular stage of the pathogen and to trigger phagosomal egress. All MS data have been deposited in the ProteomeXchange database with identifier PXD001584 (http://proteomecentral.proteomexchange.org/dataset/PXD001584).


Subject(s)
Arginine/metabolism , Francisella/metabolism , Host-Pathogen Interactions , Phagosomes/microbiology , Ribosomal Proteins/metabolism , Animals , Autophagy , Bacterial Proteins/metabolism , Bacterial Vaccines/immunology , Cluster Analysis , Cytosol/metabolism , Female , Francisella/pathogenicity , Macrophages/metabolism , Macrophages/microbiology , Macrophages/ultrastructure , Membrane Transport Proteins/metabolism , Mice, Inbred BALB C , Microbial Viability , Models, Biological , Mutation/genetics , Phagosomes/metabolism , Phagosomes/ultrastructure , Protein Transport , Proteome/metabolism , Stress, Physiological , Subcellular Fractions/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL