Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Nature ; 620(7974): 600-606, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37495691

ABSTRACT

Social anthropology and ethnographic studies have described kinship systems and networks of contact and exchange in extant populations1-4. However, for prehistoric societies, these systems can be studied only indirectly from biological and cultural remains. Stable isotope data, sex and age at death can provide insights into the demographic structure of a burial community and identify local versus non-local childhood signatures, archaeogenetic data can reconstruct the biological relationships between individuals, which enables the reconstruction of pedigrees, and combined evidence informs on kinship practices and residence patterns in prehistoric societies. Here we report ancient DNA, strontium isotope and contextual data from more than 100 individuals from the site Gurgy 'les Noisats' (France), dated to the western European Neolithic around 4850-4500 BC. We find that this burial community was genetically connected by two main pedigrees, spanning seven generations, that were patrilocal and patrilineal, with evidence for female exogamy and exchange with genetically close neighbouring groups. The microdemographic structure of individuals linked and unlinked to the pedigrees reveals additional information about the social structure, living conditions and site occupation. The absence of half-siblings and the high number of adult full siblings suggest that there were stable health conditions and a supportive social network, facilitating high fertility and low mortality5. Age-structure differences and strontium isotope results by generation indicate that the site was used for just a few decades, providing new insights into shifting sedentary farming practices during the European Neolithic.


Subject(s)
Anthropology, Cultural , Pedigree , Social Environment , Adult , Child , Female , Humans , Male , Agriculture/history , Burial/history , Fathers/history , Fertility , France , History, Ancient , Mortality/history , Siblings , Social Support/history , Strontium Isotopes/analysis , Mothers/history
2.
Nature ; 620(7973): 358-365, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37468624

ABSTRACT

Archaeogenetic studies have described two main genetic turnover events in prehistoric western Eurasia: one associated with the spread of farming and a sedentary lifestyle starting around 7000-6000 BC (refs. 1-3) and a second with the expansion of pastoralist groups from the Eurasian steppes starting around 3300 BC (refs. 4,5). The period between these events saw new economies emerging on the basis of key innovations, including metallurgy, wheel and wagon and horse domestication6-9. However, what happened between the demise of the Copper Age settlements around 4250 BC and the expansion of pastoralists remains poorly understood. To address this question, we analysed genome-wide data from 135 ancient individuals from the contact zone between southeastern Europe and the northwestern Black Sea region spanning this critical time period. While we observe genetic continuity between Neolithic and Copper Age groups from major sites in the same region, from around 4500 BC on, groups from the northwestern Black Sea region carried varying amounts of mixed ancestries derived from Copper Age groups and those from the forest/steppe zones, indicating genetic and cultural contact over a period of around 1,000 years earlier than anticipated. We propose that the transfer of critical innovations between farmers and transitional foragers/herders from different ecogeographic zones during this early contact was integral to the formation, rise and expansion of pastoralist groups around 3300 BC.


Subject(s)
Agriculture , Civilization , Grassland , Animals , Humans , Agriculture/economics , Agriculture/history , Asia , Civilization/history , Domestication , Europe , Farmers/history , History, Ancient , Horses , Sedentary Behavior/history , Inventions/economics , Inventions/history
3.
Sci Rep ; 12(1): 22415, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575206

ABSTRACT

The Early Bronze Age in Europe is characterized by social and genetic transformations, starting in the early 3rd millennium BCE. New settlement and funerary structures, artifacts and techniques indicate times of change with increasing economic asymmetries and political hierarchization. Technological advances in metallurgy also played an important role, facilitating trade and exchange networks, which became tangible in higher levels of mobility and connectedness. Archeogenetic studies have revealed a substantial transformation of the genetic ancestry around this time, ultimately linked to the expansion of steppe- and forest steppe pastoralists from Eastern Europe. Evidence for emerging infectious diseases such as Yersinia pestis adds further complexity to these tumultuous and transformative times. The El Argar complex in southern Iberia marks the genetic turnover in southwestern Europe ~ 2200 BCE that accompanies profound changes in the socio-economic structure of the region. To answer the question of who was buried in the emblematic double burials of the El Argar site La Almoloya, we integrated results from biological relatedness analyses and archaeological funerary contexts and refined radiocarbon-based chronologies from 68 individuals. We find that the El Argar society was virilocally and patrilineally organized and practiced reciprocal female exogamy, supported by pedigrees that extend up to five generations along the paternal line. Synchronously dated adult males and females from double tombs were found to be unrelated mating partners, whereby the incoming females reflect socio-political alliances among El Argar groups. In three cases these unions had common offspring, while paternal half-siblings also indicate serial monogamy or polygyny.


Subject(s)
Archaeology , Burial , Humans , Adult , Male , Female , History, Ancient , Europe , Europe, Eastern , Family
4.
Mol Biol Evol ; 39(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35578825

ABSTRACT

Human expansion in the course of the Neolithic transition in western Eurasia has been one of the major topics in ancient DNA research in the last 10 years. Multiple studies have shown that the spread of agriculture and animal husbandry from the Near East across Europe was accompanied by large-scale human expansions. Moreover, changes in subsistence and migration associated with the Neolithic transition have been hypothesized to involve genetic adaptation. Here, we present high quality genome-wide data from the Linear Pottery Culture site Derenburg-Meerenstieg II (DER) (N = 32 individuals) in Central Germany. Population genetic analyses show that the DER individuals carried predominantly Anatolian Neolithic-like ancestry and a very limited degree of local hunter-gatherer admixture, similar to other early European farmers. Increasing the Linear Pottery culture cohort size to ∼100 individuals allowed us to perform various frequency- and haplotype-based analyses to investigate signatures of selection associated with changes following the adoption of the Neolithic lifestyle. In addition, we developed a new method called Admixture-informed Maximum-likelihood Estimation for Selection Scans that allowed us test for selection signatures in an admixture-aware fashion. Focusing on the intersection of results from these selection scans, we identified various loci associated with immune function (JAK1, HLA-DQB1) and metabolism (LMF1, LEPR, SORBS1), as well as skin color (SLC24A5, CD82) and folate synthesis (MTHFR, NBPF3). Our findings shed light on the evolutionary pressures, such as infectious disease and changing diet, that were faced by the early farmers of Western Eurasia.


Subject(s)
Farmers , Human Migration , Agriculture , DNA, Ancient , DNA, Mitochondrial/genetics , Europe , Genetics, Population , History, Ancient , Humans
SELECTION OF CITATIONS
SEARCH DETAIL