Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Tzu Chi Med J ; 36(2): 152-165, 2024.
Article in English | MEDLINE | ID: mdl-38645788

ABSTRACT

Objectives: The protective effects and related mechanisms of Jing-Si herbal tea (JSHT) were investigated in cellular damage mediated by pro-inflammatory cytokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α, on normal human lung fibroblast by multiomic platform analysis. Materials and Methods: The in silico high-throughput target was analyzed using pharmacophore models by BIOVIA Discovery Studio 2022 with ingenuity pathway analysis software. To assess cell viability, the study utilized the MTT assay technique. In addition, the IncuCyte S3 ZOOM System was implemented for the continuous monitoring of cell confluence of JSHT-treated cytokine-injured HEL 299 cells. Cytokine concentrations were determined using a Quantibody Human Inflammation Array. Gene expression and signaling pathways were determined using next-generation sequencing. Results: In silico high-throughput target analysis of JSHT revealed ingenuity in canonical pathways and their networks. Glucocorticoid receptor signaling is a potential signaling of JSHT. The results revealed protective effects against the inflammatory cytokines on JSHT-treated HEL 299 cells. Transcriptome and network analyses revealed that induction of helper T lymphocytes, TNFSF12, NFKB1-mediated relaxin signaling, and G-protein coupled receptor signaling play important roles in immune regulatory on JSHT-treated cytokine-injured HEL 299 cells. Conclusion: The findings from our research indicate that JSHT holds promise as a therapeutic agent, potentially offering advantageous outcomes in treating virus infections through various mechanisms. Furthermore, the primary bioactive components in JSHT justify extended research in antiviral drug development, especially in the context of addressing coronavirus.

2.
Biomedicine (Taipei) ; 12(3): 56-71, 2022.
Article in English | MEDLINE | ID: mdl-36381194

ABSTRACT

COVID-19 pandemic has been a global outbreak of coronavirus (SARS-CoV-2 virus) since 2019. Taiwan Chingguan Yihau (NRICM101) is the first traditional Chinese medicine (TCM) classic herbal formula and is widely used for COVID-19 patients in Taiwan and more than 50 nations. This study is to investigate in silico target fishing for the components of NRICM101 and to explore whether NRICM101 inhibits cytokines-induced normal human lung cell injury in vitro. Our results showed that network prediction of NRICM101 by a high throughput target screening platform showed that NRICM101 has multiple functions that may affect cytokine regulation to prevent human lung cell injury. In addition, NRICM101 revealed protective effects against TNF-α/IL-1ß-induced normal human lung HEL 299 cell injury through JNK and p38MAPK kinase signaling. Next-generation sequencing (NGS) analysis of NRICM101 on TNF-α/IL-1ß-injured HEL 299 cells indicated that inflammatory pathway, cell movement of macrophages, cellular infiltration by macrophages, and Th1/Th2 immuno-regulation pathways were included. Thus, NRICM101 is a therapeutic agent, and it can improve COVID-19 syndrome to confer beneficial effects through multiple targeting and multiple mechanisms.

3.
Biomed Hub ; 6(3): 122-137, 2021.
Article in English | MEDLINE | ID: mdl-34934765

ABSTRACT

Negative impacts of COVID-19 on human health and economic and social activities urge scientists to develop effective treatments. Baicalin is a natural flavonoid, extracted from a traditional medicinal plant, previously reported with anti-inflammatory activity. In this study, we used pharmacophore fitting and molecular docking to screen and determine docking patterns and the binding affinity of baicalin on 3 major targets of SARS-CoV-2 (3-chymotrypsin-like cysteine protease [3CLpro], papain-like protease [PLpro], and RNA-dependent RNA polymerase). The obtained data revealed that baicalin has high pharmacophore fitting on 3CLpro and predicted good binding affinity on PLpro. Moreover, using the enzymatic assay, we examined the inhibitory effect of baicalin in vitro on the screened enzymes. Baicalin also exhibits inhibitory effect on these proteases in vitro. Additionally, we performed pharmacophore-based screening of baicalin on human targets and conducted pathway analysis to explore the potential cytoprotective effects of baicalin in the host cell that may be beneficial for COVID-19 treatment. The result suggested that baicalin has multiple targets in human cell that may induce multiple pharmacological effects. The result of pathway analysis implied that these targets may be associated with baicalin-induced bioactivities that are involved with signals of pro-inflammation factors, such as cytokine and chemokine. Taken together with supportive data from the literature, the bioactivities of bailalin may be beneficial for COVID-19 treatment by reducing cytokine-induced acute inflammation. In conclusion, baicalin is potentially a good candidate for developing new therapeutic to treat COVID-19.

4.
Int J Mol Med ; 47(1): 3-22, 2021 01.
Article in English | MEDLINE | ID: mdl-33236131

ABSTRACT

The coronavirus disease 2019 (COVID­19) outbreak, which has caused >46 millions confirmed infections and >1.2 million coronavirus related deaths, is one of the most devastating worldwide crises in recent years. Infection with COVID­19 results in a fever, dry cough, general fatigue, respiratory symptoms, diarrhoea and a sore throat, similar to those of acute respiratory distress syndrome. The causative agent of COVID­19, SARS­CoV­2, is a novel coronavirus strain. To date, remdesivir has been granted emergency use authorization for use in the management of infection. Additionally, several efficient diagnostic tools are being actively developed, and novel drugs and vaccines are being evaluated for their efficacy as therapeutic agents against COVID­19, or in the prevention of infection. The present review highlights the prevalent clinical manifestations of COVID­19, characterizes the SARS­CoV­2 viral genome sequence and life cycle, highlights the optimal methods for preventing viral transmission, and discusses possible molecular pharmacological mechanisms and approaches in the development of anti­SARS­CoV­2 therapeutic agents. In addition, the use of traditional Chinese medicines for management of COVID­19 is discussed. It is expected that novel anti­viral agents, vaccines or an effective combination therapy for treatment/management of SARS­CoV­2 infection and spread therapy will be developed and implemented in 2021, and we would like to extend our best regards to the frontline health workers across the world in their fight against COVID­19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 , Medicine, Chinese Traditional , Pandemics , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/genetics , COVID-19/pathology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
5.
Int J Oncol ; 42(6): 2069-77, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23591552

ABSTRACT

Kaempferol belongs to the flavonoid family and has been used in traditional folk medicine. Here, we investigated the antitumor effects of kaempferol on cell cycle arrest and autophagic cell death in SK-HEP-1 human hepatic cancer cells. Kaempferol decreased cell viability as determined by MTT assays and induced a G2/M phase cell cycle arrest in a concentration-dependent manner. Kaempferol did not induce DNA fragmentation, apoptotic bodies or caspase-3 activity in SK-HEP-1 cells as determined by DNA gel electrophoresis, DAPI staining and caspase-3 activity assays, respectively. In contrast, kaempferol is involved in the autophagic process. Double-membrane vacuoles, lysosomal compartments, acidic vesicular organelles and cleavage of microtubule-associated protein 1 light chain 3 (LC3) were observed by transmission electron microscopy, LysoΤracker red staining, GFP-fluorescent LC3 assays and acridine orange staining, respectively. In SK-HEP-1 cells, kaempferol increased the protein levels of p-AMPK, LC3-II, Atg 5, Atg 7, Atg 12 and beclin 1 as well as inhibited the protein levels of CDK1, cyclin B, p-AKT and p-mTOR. Taken together, CDK1/cyclin B expression and the AMPK and AKT signaling pathways contributed to kaempferol-induced G2/M cell cycle arrest and autophagic cell death in SK-HEP-1 human hepatic cancer cells. These results suggest that kaempferol may be useful for long-term cancer prevention.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/drug effects , CDC2 Protein Kinase/metabolism , Cyclin B/metabolism , Kaempferols/pharmacology , Liver Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Cell Survival/drug effects , Down-Regulation , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Microtubule-Associated Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured
6.
Article in English | MEDLINE | ID: mdl-22474491

ABSTRACT

Emilia sonchifolia (L.) DC (Compositae), an herbaceous plant found in Taiwan and India, is used as folk medicine. The clinical applications include inflammation, rheumatism, cough, cuts fever, dysentery, analgesic, and antibacteria. The activities of Emilia sonchifolia extract (ESE) on colorectal cancer cell death have not been fully investigated. The purpose of this study explored the induction of apoptosis and its molecular mechanisms in ESE-treated HCT 116 human colorectal cancer cells in vitro. The methanolic ESE was characterized, and γ-humulene was formed as the major constituent (63.86%). ESE induced cell growth inhibition in a concentration- and time-dependent response by MTT assay. Apoptotic cells (DNA fragmentation, an apoptotic catachrestic) were found after ESE treatment by TUNEL assay and DNA gel electrophoresis. Alternatively, ESE stimulated the activities of caspase-3, -8, and -9 and their specific caspase inhibitors protected against ESE-induced cytotoxicity. ESE promoted the mitochondria-dependent and death-receptor-associated protein levels. Also, ESE increased ROS production and upregulated the levels of ATM, p53, and Fas in HCT 116 cells. Strikingly, p53 siRNA reversed ESE-reduced viability involved in p53-mediated ATM/Fas signaling in HCT 116 cells. In summary, our result is the first report suggesting that ESE may be potentially efficacious in the treatment of colorectal cancer.

7.
Anticancer Res ; 30(9): 3549-56, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20944136

ABSTRACT

It is reported that Houttuynia cordata Thunb. (HCT), a traditional Chinese herbal medicine, has many biological properties such as antiviral, antibacterial and antileukemic activities. However, the molecular mechanisms of cytotoxicity and apoptosis in human primary colorectal cancer cells are not clear. In this study, whether HCT induced cytotoxicity in primary colorectal cancer cells obtained from three patients was investigated. The results indicated that HCT inhibited growth of cancer cells in a dose-dependent manner. After treatment with HCT (250 µg/ml) for 24 h, cells exhibited chromatin condensation (an apoptotic characteristic). HCT increased reactive oxygen species (ROS) production and decreased the mitochondrial membrane potential (ΔΨ(m)) in examined cells. Mitochondria-dependent apoptotic signaling pathway was shown to be involved as determined by increase in the levels of cytochrome c, Apaf-1, and caspase-3 and -9. The decrease in the level of ΔΨ(m) was associated with an increase in the BAX/BCL-2 ratio which led to activation of caspase-9 and -3. Based on our results, HCT induced apoptotic cell death in human primary colorectal cancer cells through a mitochondria-dependent signaling pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Drugs, Chinese Herbal/pharmacology , Blotting, Western , Caspases/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Colorectal Neoplasms/metabolism , Houttuynia , Humans , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL