Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Publication year range
1.
Biomed Pharmacother ; 149: 112755, 2022 May.
Article in English | MEDLINE | ID: mdl-35276466

ABSTRACT

Lactobacilli have been shown to inhibit or suppress cancer cell growth through the release of strain-specific bioactive metabolites and their inclusion in functional foods could exert a health promoting activity on human health. Herein, we examined the antiproliferative activity of the Lactiplantibacillus plantarum strains S2T10D and O2T60C, which have been previously shown to exert different butyrogenic activities. Human HT-29 cells were employed as an in vitro colon cancer model and both bacterial strains were found to inhibit their growth. However, the strain S2T10D showed a greater antiproliferative activity which, interestingly, was correlated to its butyrogenic capability. Noteworthy, for the non-butyrogenic strain O2T60C, the growth inhibitory capability was rather limited. Furthermore, both the butyrate-containing supernatant of S2T10D and glucose-deprived cell culture medium supplemented with the same concentration of butyrate found in S2T10D supernatant, induced a pH-independent cancer cell growth inhibition accompanied by downregulation of cyclin D1 at mRNA level. The downregulation of cyclin D1 gene expression was accompanied by cell cycle arrest in G2/M phase and decrease of cyclin B1 and D1 protein levels. This in vitro study underlines the impact of Lpb. plantarum in the growth inhibition of cancer cells, and proposes butyrate-mediated cell cycle regulation as a potential involved mechanism. Since the production of butyric acid in Lpb. plantarum has been proven strain-dependent and differentially boosted by specific prebiotic compounds, our results open future research paths to determine whether this metabolic activity could be modulated in vivo by enhancing this antiproliferative effects on cancer cells.


Subject(s)
Colonic Neoplasms , Cyclin D1 , Butyric Acid , Cell Proliferation , Cyclin D1/metabolism , Humans , Lactobacillaceae/metabolism
2.
Antioxidants (Basel) ; 10(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070804

ABSTRACT

Lippia citriodora is a flowering plant cultivated for its lemon-scented leaves and used in folk medicine for the preparation of tea for the alleviation of symptoms of gastrointestinal disorders, cold, and asthma. The oil extracted from the plant leaves was shown to possess antioxidant potential and to exert antiproliferative activity against breast cancer. The aim of this study was to further investigate potential antitumor effects of L. citriodora oil (LCO) on breast cancer. The in vitro antiproliferative activity of LCO was examined against murine DA3 breast cancer cells by the sulforhodamine B assay. We further explored the LCO's pro-apoptotic potential with the Annexin-PI method. The LCO's anti-migratory effect was assessed by the wound-healing assay. LCO was found to inhibit the growth of DA3 cells in vitro, attenuate their migration, and induce apoptosis. Finally, oral administration of LCO for 14 days in mice inhibited by 55% the size of developing tumors in the DA3 murine tumor model. Noteworthy, in the tumor tissue of LCO-treated mice the apoptotic marker cleaved caspase-3 was elevated, while a reduced protein expression of survivin was observed. These results indicate that LCO, as a source of bioactive compounds, has a very interesting nutraceutical potential.

3.
Molecules ; 24(14)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31323754

ABSTRACT

Origanum species are plants rich in volatile oils that are mainly used for culinary purposes. In recent years, there has been a growing interest in the biological activities of their essential oils. Origanum onites L. is a plant mainly found in Greece, Turkey, and Sicily, whose oil is rich in carvacrol, a highly bioactive phytochemical. The aim of this study was to analyze the chemical composition of Origanum onites essential oil (OOEO), and investigate its potential anticancer effects in vitro and in vivo. GC/MS analysis identified carvacrol as OOEO's main constituent. In vitro antiproliferative activity was assayed with the sulforhodamine B (SRB) assay against human cancer cell lines from four tumor types. HT-29, a colorectal cancer cell line, was the most sensitive to the antiproliferative activity of OOEO. Wound-healing assay and Annexin V-PI staining were employed to investigate the antimigratory and the pro-apoptotic potential of OOEO, respectively, against human (HT-29) and murine (CT26) colon cancer cells. Notably, OOEO attenuated migration and induced apoptosis-related morphological changes in both cell lines. Prophylactic oral administration of the oil in a BALB/c experimental mouse model inhibited the growth of syngeneic CT26 colon tumors. As far as we know, this is the first report on the antitumor potential of orally administered OOEO.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Origanum/chemistry , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemical Fractionation , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Gas Chromatography-Mass Spectrometry , Humans , Mice , Oils, Volatile/isolation & purification , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Xenograft Model Antitumor Assays
4.
Anticancer Res ; 39(5): 2307-2315, 2019 May.
Article in English | MEDLINE | ID: mdl-31092422

ABSTRACT

BACKGROUND: Several studies have highlighted hyperthermia's ability to enhance the effectiveness of radiation and chemotherapy in various in vitro and in vivo cancer models. MATERIALS AND METHODS: In vivo murine models of malignant melanoma and colon carcinoma were utilized for demonstrating hyperthermia's therapeutic effectiveness by examining levels of caspase 3, COX-2 and phospho-H2A.X (Ser139) as endpoints of apoptosis, proliferation and DNA damage respectively. RESULTS: Hyperthermia induced in vitro cytotoxicity in malignant melanoma (B16-F10) and colon carcinoma (CT26) cell lines. In addition, it reduced post-in vitro proliferation and suppression of tumor growth by inducing the expression of caspase-3 and phospho-H2A.X (Ser139) while reducing the expression of COX-2 in both murine cancer models. CONCLUSION: Hyperthermia can exert therapeutic effectiveness against melanoma and colon carcinoma by inhibiting a number of critical cellular cascades including apoptosis, proliferation and DNA damage.


Subject(s)
Colonic Neoplasms/therapy , Hyperthermia, Induced , Melanoma, Experimental/therapy , Melanoma/therapy , Animals , Apoptosis/radiation effects , Carcinoma/pathology , Carcinoma/therapy , Caspase 3/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Colonic Neoplasms/pathology , Cyclooxygenase 2/genetics , DNA Damage/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics , Histones/genetics , Humans , Melanoma/pathology , Melanoma, Experimental/genetics , Mice
5.
Molecules ; 23(1)2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29329229

ABSTRACT

The aim of the study was to characterize the chemical composition and biological properties of the essential oil from the plant Lippia citriodora grown in Greece. The essential oil volatiles were analyzed by gas chromatography-mass spectrometry GC-MS indicating citral as the major component. Τhe antimicrobial properties were assayed using the disk diffusion method and the minimum inhibitory and non-inhibitory concentration values were determined. Listeria monocytogenes, Staphylococcus epidermidis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger were sensitive to Lippia citriodora oil, but not Escherichia coli, Salmonella Enteritidis, Salmonella typhimurium, and Pseudomonas fragi. Adversely, all microbes tested were sensitive to citral. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays were used to assess direct antioxidant activity, which proved to be weak for both agents, while comet assay was utilized to study the cytoprotective effects against H2O2-induced oxidative damage in Jurkat cells. Interestingly, the oil showed a more profound cytoprotective effect compared to citral. The antiproliferative activity was evaluated in a panel of cancer cell lines using the sulforhodamine B (SRB) and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-S-(phenylamino) carbonyl-2-tetrazolium hydroxide (XTT) assays and both agents demonstrated potent antiproliferative activity with citral being more cytotoxic than the oil. Taken together, the essential oil of Lippia citriodora and its major component, citral, exert diverse biological properties worthy of further investigation.


Subject(s)
Lippia/chemistry , Oils, Volatile/chemistry , Phytochemicals/chemistry , Plant Oils/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Oils, Volatile/pharmacology , Phytochemicals/pharmacology , Plant Oils/analysis , Plant Oils/pharmacology
6.
Sci Rep ; 7(1): 3782, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28630399

ABSTRACT

Plant-derived bioactive compounds attract considerable interest as potential chemopreventive anticancer agents. We analyzed the volatile dietary phytochemicals (terpenes) present in mastic oil extracted from the resin of Pistacia lentiscus var. chia and comparatively investigated their effects on colon carcinoma proliferation, a) in vitro against colon cancer cell lines and b) in vivo on tumor growth in mice following oral administration. Mastic oil inhibited - more effectively than its major constituents- proliferation of colon cancer cells in vitro, attenuated migration and downregulated transcriptional expression of survivin (BIRC5a). When administered orally, mastic oil inhibited the growth of colon carcinoma tumors in mice. A reduced expression of Ki-67 and survivin in tumor tissues accompanied the observed effects. Notably, only mastic oil -which is comprised of 67.7% α-pinene and 18.8% myrcene- induced a statistically significant anti-tumor effect in mice but not α-pinene, myrcene or a combination thereof. Thus, mastic oil, as a combination of terpenes, exerts growth inhibitory effects against colon carcinoma, suggesting a nutraceutical potential in the fight against colon cancer. To our knowledge, this is the first report showing that orally administered mastic oil induces tumor-suppressing effects against experimental colon cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Colonic Neoplasms/drug therapy , Mastic Resin/chemistry , Neoplasms, Experimental/drug therapy , Pistacia/chemistry , Plant Oils/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Caco-2 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Female , Humans , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Plant Oils/chemistry , Xenograft Model Antitumor Assays
7.
Molecules ; 21(8)2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27537869

ABSTRACT

Natural products, known for their medicinal properties since antiquity, are continuously being studied for their biological properties. In the present study, we analyzed the composition of the volatile preparations of essential oils of the Greek plants Ocimum basilicum (sweet basil), Mentha spicata (spearmint), Pimpinella anisum (anise) and Fortunella margarita (kumquat). GC/MS analyses revealed that the major components in the essential oil fractions, were carvone (85.4%) in spearmint, methyl chavicol (74.9%) in sweet basil, trans-anethole (88.1%) in anise, and limonene (93.8%) in kumquat. We further explored their biological potential by studying their antimicrobial, antioxidant and antiproliferative activities. Only the essential oils from spearmint and sweet basil demonstrated cytotoxicity against common foodborne bacteria, while all preparations were active against the fungi Saccharomyces cerevisiae and Aspergillus niger. Antioxidant evaluation by DPPH and ABTS radical scavenging activity assays revealed a variable degree of antioxidant potency. Finally, their antiproliferative potential was tested against a panel of human cancer cell lines and evaluated by using the sulforhodamine B (SRB) assay. All essential oil preparations exhibited a variable degree of antiproliferative activity, depending on the cancer model used, with the most potent one being sweet basil against an in vitro model of human colon carcinoma.


Subject(s)
Mentha spicata/chemistry , Ocimum basilicum/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Pimpinella/chemistry , Rutaceae/chemistry , Allylbenzene Derivatives , Anisoles/isolation & purification , Anisoles/pharmacology , Aspergillus niger/drug effects , Bacteria/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclohexane Monoterpenes , Cyclohexenes/isolation & purification , Cyclohexenes/pharmacology , Drug Screening Assays, Antitumor , Food Microbiology , Humans , Limonene , Microbial Sensitivity Tests , Monoterpenes/isolation & purification , Monoterpenes/pharmacology , Oxidation-Reduction/drug effects , Plant Oils/chemistry , Plant Oils/pharmacology , Saccharomyces cerevisiae/drug effects , Terpenes/isolation & purification , Terpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL