Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Mol Pharmacol ; 90(5): 530-539, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27573669

ABSTRACT

α-Pinene is a major monoterpene of the pine tree essential oils. It has been reported that α-pinene shows anxiolytic and hypnotic effects upon inhaled administration. However, hypnotic effect by oral supplementation and the molecular mechanism of α-pinene have not been determined yet. By combining in vivo sleep behavior, ex vivo electrophysiological recording from brain slices, and in silico molecular modeling, we demonstrate that (-)-α-pinene shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site. The effect of (-)-α-pinene on sleep-wake profiles was evaluated by recording electroencephalogram and electromyogram. The molecular mechanism of (-)-α-pinene was investigated by electrophysiology and molecular docking study. (-)-α-pinene significantly increased the duration of non-rapid eye movement sleep (NREMS) and reduced the sleep latency by oral administration without affecting duration of rapid eye movement sleep and delta activity. (-)-α-pinene potentiated the GABAA receptor-mediated synaptic response by increasing the decay time constant of sIPSCs in hippocampal CA1 pyramidal neurons. These effects of (-)-α-pinene on sleep and inhibitory synaptic response were mimicked by zolpidem, acting as a modulator for GABAA-BZD receptors, and fully antagonized by flumazenil, an antagonist for GABAA-BZD receptor. (-)-α-pinene was found to bind to aromatic residues of α1- and -γ2 subunits of GABAA-BZD receptors in the molecular model. We conclude that (-)-α-pinene enhances the quantity of NREMS without affecting the intensity of NREMS by prolonging GABAergic synaptic transmission, acting as a partial modulator of GABAA-BZD receptors and directly binding to the BZD binding site of GABAA receptor.


Subject(s)
Benzodiazepines/metabolism , Eye Movements/drug effects , Monoterpenes/pharmacology , Pinus/chemistry , Plant Oils/pharmacology , Receptors, GABA-A/metabolism , Sleep/drug effects , Animals , Bicyclic Monoterpenes , Binding Sites , Flumazenil/chemistry , Flumazenil/pharmacology , Inhibitory Postsynaptic Potentials/drug effects , Male , Mice, Inbred C57BL , Mice, Inbred ICR , Models, Molecular , Monoterpenes/chemistry , Pentobarbital , Pyridines/chemistry , Pyridines/pharmacology , Sleep, REM/drug effects , Time Factors , Wakefulness/drug effects , Zolpidem
2.
Psychopharmacology (Berl) ; 231(14): 2825-37, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24488362

ABSTRACT

RATIONALE: In psychopharmacology, researchers have been interested in the hypnotic effects of terrestrial plant polyphenols and their synthetic derivatives. Phlorotannins, a marine plant polyphenol, could have potential as a source of novel hypnotic drugs. OBJECTIVES: The effects of phlorotannins and major phlorotannin constituent eckstolonol on sleep-wake profiles in mice were evaluated in comparison with diazepam, and their hypnotic mechanism was also investigated. METHODS: The effects of phlorotannin preparation (PRT) and eckstolonol orally given on sleep-wake profiles were measured by recording electroencephalograms (EEG) and electromyograms in C57BL/6N mice. Flumazenil, a GABAA-benzodiazepine (BZD) receptor antagonist, was injected 15 min before PRT and eckstolonol to reveal its hypnotic mechanism. RESULTS: PRT administration (>250 mg/kg) produced a significant decrease in sleep latency and an increase in the amount of non-rapid eye movement sleep (NREMS). Eckstolonol significantly decreased sleep latency (>12.5 mg/kg) and increased the amount of NREMS (50 mg/kg). PRT and eckstolonol had no effect on EEG power density of NREMS. The hypnotic effects of PRT or eckstolonol were completely abolished by pretreatment with flumazenil. CONCLUSIONS: We demonstrated that phlorotannins promote NREMS by modulating the BZD site of the GABAA receptor. These results suggest that phlorotannins can be potentially used as an herbal medicine for insomnia and as a promising structure for developing novel sedative-hypnotics.


Subject(s)
Polyphenols/pharmacology , Receptors, GABA-A/drug effects , Sleep/drug effects , Tannins/pharmacology , Animals , Diazepam/pharmacology , Dioxanes/administration & dosage , Dioxanes/pharmacology , Dose-Response Relationship, Drug , Electroencephalography , Flumazenil/pharmacology , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Heterocyclic Compounds, 4 or More Rings/pharmacology , Hypnotics and Sedatives/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Polyphenols/administration & dosage , Receptors, GABA-A/metabolism , Tannins/administration & dosage
3.
Eur J Med Chem ; 74: 246-57, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24480356

ABSTRACT

New tetrahydropyridinyl and piperidinyl ethylamine derivatives were designed with hypothetical mapping on pharmacophore model generated from ligand-based virtual screening. The designed compounds were synthesized, and their inhibitory activities on T-type calcium channel were assayed using FDSS and patch-clamp assay. Among them, compounds 7b and 10b showed potent T-type calcium current blocking activity against Ca(v)3.1 (α(1G)) and Ca(v)3.2 (α(1H)) channel simultaneously. With hERG and pharmacokinetics studies, compounds 7b and 10b were evaluated for the antinociceptive effect on rat model of neuropathic pain. They were significantly effective in decreasing the pain responses to mechanical and cold allodynia induced by spinal nerve ligation. These results suggest that modulation of α(1G) and α(1H) subtype T-type calcium channels may provide a promising approach for the treatment of neuropathic pain.


Subject(s)
Analgesics/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/drug effects , Neuralgia/drug therapy , Piperidines/chemical synthesis , Pyridines/chemical synthesis , Analgesics/therapeutic use , Animals , Calcium Channel Blockers/therapeutic use , Drug Evaluation, Preclinical , Humans , Magnetic Resonance Spectroscopy , Piperidines/pharmacology , Piperidines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Rats
4.
Bioorg Med Chem ; 20(11): 3493-501, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22543233

ABSTRACT

Licorice (Glycyrrhiza glabra, GG) is one of the most frequently used herbal medicines worldwide, and its various biological activities have been widely studied. GG is reported to have neurological properties such as antidepressant, anxiolytic, and anticonvulsant effects. However, its hypnotic effects and the mechanism of GG and its active compounds have not yet been demonstrated. In this study, GG ethanol extract (GGE) dose-dependently potentiated pentobarbital-induced sleep and increased the amount of non-rapid eye movement sleep in mice without decreasing delta activity. The hypnotic effect of GGE was completely inhibited by flumazenil, which is a well-known γ-aminobutyric acid type A-benzodiazepine (GABA(A)-BZD) receptor antagonist, similar to other GABA(A)-BZD receptor agonists (e.g., diazepam and zolpidem). The major flavonoid glabrol was isolated from the flavonoid-rich fraction of GGE; it inhibited [(3)H] flumazenil binding to the GABA(A)-BZD receptors in rat cerebral cortex membrane with a binding affinity (K(i)) of 1.63 µM. The molecular structure and pharmacophore model of glabrol and liquiritigenin indicate that the isoprenyl groups of glabrol may play a key role in binding to GABA(A)-BZD receptors. Glabrol increased sleep duration and decreased sleep latency in a dose-dependent manner (5, 10, 25, and 50mg/kg); its hypnotic effect was also blocked by flumazenil. The results imply that GGE and its flavonoid glabrol induce sleep via a positive allosteric modulation of GABA(A)-BZD receptors.


Subject(s)
Flavonoids/pharmacology , Glycyrrhiza/chemistry , Hypnotics and Sedatives/pharmacology , Plant Extracts/pharmacology , Receptors, GABA-A/metabolism , Animals , Dose-Response Relationship, Drug , Ethanol/chemistry , Eye Movements/drug effects , Flavanones/chemistry , Flavanones/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Flumazenil/pharmacology , GABA-A Receptor Antagonists/metabolism , GABA-A Receptor Antagonists/pharmacology , Hypnotics and Sedatives/chemistry , Ligands , Mice , Mice, Inbred C57BL , Molecular Structure , Pentobarbital/pharmacology , Plant Extracts/chemistry , Plant Preparations , Sleep/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL