Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
J Microbiol Biotechnol ; 34(3): 634-643, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38111312

ABSTRACT

Juglans mandshurica Maxim. walnut (JMW) is well-known for the treatment of dermatosis, cancer, gastritis, diarrhea, and leukorrhea in Korea. However, the molecular mechanism underlying its anti-obesity activity remains unknown. In the current study, we aimed to determine whether JMW can influence adipogenesis in 3T3-L1 preadipocytes and high-fat diet rats and determine the antioxidant activity. The 20% ethanol extract of JMW (JMWE) had a total polyphenol content of 133.33 ± 2.60 mg GAE/g. Considering the antioxidant capacity, the ABTS and DPPH values of 200 µg/ml of JMWE were 95.69 ± 0.94 and 79.38 ± 1.55%, respectively. To assess the anti-obesity activity of JMWE, we analyzed the cell viability, fat accumulation, and adipogenesis-related factors, including CCAAT-enhancer-binding protein alpha (C/EBPα), sterol regulatory element-binding protein-1c (SREBP1c), peroxisome proliferator-activated receptor-gamma (PPARγ), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). We found that total lipid accumulation and triglyceride levels were reduced, and the fat accumulation rate decreased in a dose-dependent manner. Furthermore, JMWE suppressed adipogenesis-related factors C/EBPα, PPARγ, and SREBP1c, as well as FAS and ACC, both related to lipogenesis. Moreover, animal experiments revealed that JMWE could be employed to prevent and treat obesity-related diseases. Hence, JMWE could be developed as a healthy functional food and further explored as an anti-obesity drug.


Subject(s)
Anti-Obesity Agents , Juglans , Mice , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Juglans/metabolism , 3T3-L1 Cells , Diet, High-Fat/adverse effects , PPAR gamma/metabolism , Adipocytes , Obesity/drug therapy , Obesity/metabolism , Adipogenesis , Anti-Obesity Agents/chemistry , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/pharmacology , CCAAT-Enhancer-Binding Protein-alpha/therapeutic use , Acetyl-CoA Carboxylase/metabolism , Plant Extracts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL