Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Phytomedicine ; 125: 155266, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38241917

ABSTRACT

BACKGROUND: Increasing evidence highlights the involvement of metabolic disorder and calcium influx mediated by transient receptor potential channels in migraine; however, the relationship between these factors in the pathophysiology of migraine remains unknown. Gastrodin is the major component of the traditional Chinese medicine Tianma, which is extensively used in migraine therapy. PURPOSE: Our work aimed to explore the analgesic action of gastrodin and its regulatory mechanisms from a metabolic perspective. METHODS/RESULTS: After being treated with gastrodin, the mice were given nitroglycerin (NTG) to induce migraine. Gastrodin treatment significantly raised the threshold of sensitivity in response to both mechanical and thermal stimulus evidenced by von Frey and hot plate tests, respectively, and decreased total contact numbers in orofacial operant behavioral assessment. We found that the expression of transient receptor potential melastatin 2 (TRPM2) channel was increased in the trigeminal ganglion (TG) of NTG-induced mice, resulting in a sustained Ca2+ influx to trigger migraine pain. The content of succinate, a metabolic biomarker, was elevated in blood samples of migraineurs, as well as in the serum and TG tissue from NTG-induced migraine mice. Calcium imaging assay indicated that succinate insult elevated TRPM2-mediated calcium flux signal in TG neurons. Mechanistically, accumulated succinate upregulated hypoxia inducible factor-1α (HIF-1α) expression and promoted its translocation into nucleus, where HIF-1α enhanced TRPM2 expression through transcriptional induction in TG neurons, evidenced by luciferase reporter measurement. Gastrodin treatment inhibited TRPM2 expression and TRPM2-dependent Ca2+ influx by attenuating succinate accumulation and downstream HIF-1α signaling, and thereby exhibited analgesic effect. CONCLUSION: This work revealed that succinate was a critical metabolic signaling molecule and the key mediator of migraine pain through triggering TRPM2-mediated calcium overload. Gastrodin alleviated NTG-induced migraine-like pain via inhibiting succinate/HIF-1α/TRPM2 signaling pathway in TG neurons. These findings uncovered the anti-migraine effect of gastrodin and its regulatory mechanisms from a metabolic perspective and provided a novel theoretical basis for the analgesic action of gastrodin.


Subject(s)
Benzyl Alcohols , Glucosides , Migraine Disorders , TRPM Cation Channels , Mice , Animals , Nitroglycerin/adverse effects , Nitroglycerin/metabolism , Succinic Acid/adverse effects , Succinic Acid/metabolism , Calcium/metabolism , TRPM Cation Channels/adverse effects , TRPM Cation Channels/metabolism , Trigeminal Ganglion/metabolism , Pain/drug therapy , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Signal Transduction , Analgesics/pharmacology
2.
J Pharmacol Sci ; 128(3): 131-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26154848

ABSTRACT

Plumbagin is a natural compound that is isolated from the root of the medicinal plant Plumbago zeylanica L. Based on a previous in vitro study performed by our group, which demonstrated the effectiveness of plumbagin against glioma cells, we further ascertained whether plumbagin exhibits the same effectiveness against glioma cell xenografts in nude mice. Our results revealed that tumor volume was reduced by 54.48% in the plumbagin-treated group compared with the controls. Furthermore, there were no obvious signs of toxicity as assessed by the organ sizes and cell morphologies of the mice that were treated with plumbagin. Immunofluorescence assays further revealed that plumbagin significantly inhibited glioma cell proliferation and induced cell apoptosis. Importantly, we also determined that the expressions of FOXM1 and its downstream target effectors, including cyclin D1 and Cdc25B, were down-regulated in the treated group, while the expressions of p21 and p27 were increased; the latter findings corroborate the results of our previous in vitro study. Taken together, these findings indicate that plumbagin may be a natural downregulator of FOXM1 with potential therapeutic effectiveness for the treatment of gliomas.


Subject(s)
Antineoplastic Agents, Phytogenic , Down-Regulation/drug effects , Down-Regulation/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression/drug effects , Glioma/genetics , Glioma/pathology , Molecular Targeted Therapy , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Phytotherapy , Plumbaginaceae/chemistry , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Forkhead Box Protein M1 , Gene Expression/genetics , Glioma/drug therapy , Humans , Mice, Nude , Naphthoquinones/isolation & purification , Neoplasm Transplantation
3.
J Neurooncol ; 121(3): 469-77, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25528634

ABSTRACT

Plumbagin, a natural quinonoid constituent isolated from the root of medicinal plant Plumbago zeylanica L, has exhibited anti-tumor and anti-proliferative activities in various tumor cell lines as well as in animal tumor models. However, its anticancer effects and the mechanisms underlying its suppression of glioma cell growth have not been elucidated. Oncogenic transcription factor Forkhead Box M1 (FOXM1) has garnered particular interest in recent years as a potential target for the prevention and/or therapeutic intervention in glioma, nevertheless, less information is currently available regarding FOXM1 inhibitor. Here, we reported that plumbagin could effectively inhibit cell proliferation, migration and invasion and induce apoptosis of glioma cells. Cell cycle assay showed that plumbagin induced G2/M arrest. Interestingly, we found that plumbagin decreased the expression of FOXM1 both at mRNA level and protein level. Plumbagin also inhibited the transactivation ability of FOXM1, resulting in down-regulating the expression of FOXM1 downstream target genes, such as cyclin D1, Cdc25B, survivin, and increasing the expression of p21(CIP1) and p27(KIP1). Most importantly, down-regulation of FOXM1 by siFOXM1 transfection enhanced plumbagin-induced change in viability. On the contrary, over-expression of FOXM1 by cDNA transfection reduced plumbagin-induced glioma cell growth inhibition. These results suggest that plumbagin exhibits its anticancer activity partially by inactivation of FOXM1 signaling pathway in glioma cells. Our findings indicate that plumbagin may be considered as a potential natural FOXM1 inhibitor, which could contribute to the development of new anticancer agent for therapy of gliomas.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Forkhead Transcription Factors/biosynthesis , Gene Expression Regulation, Neoplastic/drug effects , Glioma/metabolism , Naphthoquinones/pharmacology , Apoptosis/drug effects , Blotting, Western , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Down-Regulation , Forkhead Box Protein M1 , Humans , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL