Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835281

ABSTRACT

Myocardial ischemia/reperfusion (I/R) injury is marked by rapid increase in inflammation and not only results in myocardial apoptosis but also compromises the myocardial function. Dunaliella salina (D. salina), a halophilic unicellular microalga, has been used as a provitamin A carotenoid supplement and color additive. Several studies have reported that D. salina extract could attenuate lipopolysaccharides-induced inflammatory effects and regulate the virus-induced inflammatory response in macrophages. However, the effects of D. salina on myocardial I/R injury remain unknown. Therefore, we aimed to investigate the cardioprotection of D. salina extract in rats subjected to myocardial I/R injury that was induced by occlusion of the left anterior descending coronary artery for 1 h followed by 3 h of reperfusion. Compared with the vehicle group, the myocardial infarct size significantly decreased in rats that were pre-treated with D. salina. D. salina significantly attenuated the expressions of TLR4, COX-2 and the activity of STAT1, JAK2, IκB, NF-κB. Furthermore, D. salina significantly inhibited the activation of caspase-3 and the levels of Beclin-1, p62, LC3-I/II. This study is the first to report that the cardioprotective effects of D. salina may mediate anti-inflammatory and anti-apoptotic activities and decrease autophagy through the TLR4-mediated signaling pathway to antagonize myocardial I/R injury.


Subject(s)
Chlorophyta , Myocardial Reperfusion Injury , Toll-Like Receptor 4 , Animals , Rats , Apoptosis , Myocardial Reperfusion Injury/prevention & control , NF-kappa B/metabolism , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4/metabolism
2.
Front Pharmacol ; 11: 586498, 2020.
Article in English | MEDLINE | ID: mdl-33551799

ABSTRACT

Many studies have shown that crosstalk exists between apoptosis and autophagy, despite differences in mechanisms between these processes. Paeonol, a major phenolic compound isolated from Moutan Cortex Radicis, the root bark of Paeonia × suffruticosa Andrews (Paeoniaceae), is widely used in traditional Chinese medicine as an antipyretic, analgesic and anti-inflammatory agent. In this study, we investigated the detailed molecular mechanisms of the crosstalk between apoptosis and autophagy underlying the cardioprotective effects of paeonol in rats subjected to myocardial ischemia/reperfusion (I/R) injury. Myocardial I/R injury was induced by occlusion of the left anterior descending coronary artery (LAD) for 1 h followed by 3 h of reperfusion. Paeonol was intravenously administered 15 min before LAD ligation. We found that paeonol significantly improved cardiac function after myocardial I/R injury and significantly decreased myocardial I/R-induced arrhythmia and mortality. Paeonol also significantly decreased myocardial infarction and plasma LDH activity and Troponin-I levels in carotid blood after I/R. Compared with vehicle treatment, paeonol significantly upregulated Bcl-2 protein expression and significantly downregulated the cleaved forms of caspase-8, caspase-9, caspase-3 and PARP protein expression in the I/R injured myocardium. Myocardial I/R-induced autophagy, including the increase of Beclin-1, p62, LC3-I, and LC3-II protein expression in the myocardium was significantly reversed by paeonol treatment. Paeonol also significantly increased the Bcl-2/Bax and Bcl-2/Beclin-1 ratios in the myocardium after I/R injury. The cardioprotective role of paeonol during I/R injury may be due to its mediation of crosstalk between apoptotic and autophagic signaling pathways, which inhibits apoptosis and autophagic cell death.

3.
Pain ; 119(1-3): 113-123, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16297560

ABSTRACT

Nitric oxide (NO) acts as a neurotransmitter or neuromodulator involving in the modulation of thermal and/or inflammatory hyperalgesia. The neuronal nitric oxide synthase (nNOS) is a key enzyme for NO production in normal neuronal tissues, but its functional role in chronic pain remains unclear. The present study combined a genetic strategy with a pharmacologic approach to address the role of nNOS in the central mechanism of complete Freund's adjuvant (CFA)-induced chronic inflammatory pain. Targeted disruption of the nNOS gene significantly reduced CFA-induced mechanical pain hypersensitivity during the maintenance (but not the development) of inflammatory pain, while it failed to attenuate either development or maintenance of CFA-induced thermal pain hypersensitivity. Intraperitoneal administration of L-N(G)-nitro-arginine methyl ester (L-NAME), a non-specific NOS inhibitor, blocked CFA-evoked thermal and mechanical pain hypersensitivity at both development (2h) and maintenance (24h) phase in wild type mice, but had no effect in the knockout mice. Furthermore, intrathecal injection of either L-NAME or 7-nitroindazole, a selective nNOS inhibitor, markedly attenuated mechanical pain hypersensitivity at both 2 and 24h after CFA injection. Finally, spinal cord nNOS (but not endothelial NOS or inducible NOS) expression was up-regulated at 24h after CFA injection, occurring mainly in the ipsilateral superficial dorsal horn. Together, these data indicate that spinal cord nNOS may be essential for the maintenance of mechanical pain hypersensitivity and that it may also be sufficient for the development of mechanical pain hypersensitivity and for the development and maintenance of thermal pain hypersensitivity after chronic inflammation. Our findings suggest that spinal cord nNOS might play a critical role in central mechanisms of the development and/or maintenance of chronic inflammatory pain.


Subject(s)
Behavior, Animal , Hyperalgesia/physiopathology , Neuralgia/physiopathology , Nitric Oxide Synthase Type I/antagonists & inhibitors , Nitric Oxide Synthase Type I/deficiency , Pain Threshold , Posterior Horn Cells/physiopathology , Animals , Chronic Disease , Freund's Adjuvant , Hyperalgesia/chemically induced , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NG-Nitroarginine Methyl Ester/administration & dosage , Neuralgia/chemically induced , Nitric Oxide Synthase Type I/genetics , Posterior Horn Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL