Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
BMC Vet Res ; 20(1): 133, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570815

ABSTRACT

BACKGROUND: Obesity is a serious disease with an alarmingly high incidence that can lead to other complications in both humans and dogs. Similar to humans, obesity can cause metabolic diseases such as diabetes in dogs. Natural products may be the preferred intervention for metabolic diseases such as obesity. The compound 1-deoxynojirimycin, present in Morus leaves and other sources has antiobesity effects. The possible antiobesity effect of 1-deoxynojirimycin containing Morus alba leaf-based food was studied in healthy companion dogs (n = 46) visiting the veterinary clinic without a history of diseases. Body weight, body condition score (BCS), blood-related parameters, and other vital parameters of the dogs were studied. Whole-transcriptome of blood and gut microbiome analysis was also carried out to investigate the possible mechanisms of action and role of changes in the gut microbiome due to treatment. RESULTS: After 90 days of treatment, a significant antiobesity effect of the treatment food was observed through the reduction of weight, BCS, and blood-related parameters. A whole-transcriptome study revealed differentially expressed target genes important in obesity and diabetes-related pathways such as MLXIPL, CREB3L1, EGR1, ACTA2, SERPINE1, NOTCH3, and CXCL8. Gut microbiome analysis also revealed a significant difference in alpha and beta-diversity parameters in the treatment group. Similarly, the microbiota known for their health-promoting effects such as Lactobacillus ruminis, and Weissella hellenica were abundant (increased) in the treatment group. The predicted functional pathways related to obesity were also differentially abundant between groups. CONCLUSIONS: 1-Deoxynojirimycin-containing treatment food have been shown to significantly improve obesity. The identified genes, pathways, and gut microbiome-related results may be pursued in further studies to develop 1-deoxynojirimycin-based products as candidates against obesity.


Subject(s)
Diabetes Mellitus , Dog Diseases , Gastrointestinal Microbiome , Metabolic Diseases , Morus , Humans , Animals , Dogs , 1-Deoxynojirimycin/pharmacology , Plant Extracts/pharmacology , Obesity/drug therapy , Obesity/veterinary , Diabetes Mellitus/veterinary , Metabolic Diseases/veterinary , Plant Leaves
2.
J Anim Sci Technol ; 63(6): 1355-1361, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34957449

ABSTRACT

Digestibility of pet food can affect the health of dog, especially of aged animals. To maintain the health of dogs in an overall good status it is necessary to provide nutritionally balanced food. For example, the digestibility of dogs was known to be decreased along aging. In addition, losing teethes is an often event in aged dogs that could induce a problem to eat a large size dry pet food. Nonetheless, few detailed information is available on the most suited feeding for aged dogs. As part of the nutritional study of food for aged dogs, in this study, we tested whether food type impacts on digestibility on adult versus senior dogs. The methodology to measure the digestibility of nutrients was chosen the index method using chromium oxide. Dogs were fed the same commercial dry or wet diets, which were supplemented with 0.5% chromium oxide. The wet food was prepared by adding twice volume of water in the dry food prior to incubated overnight (14-16 hours) at room temperature. After five days, their feces were collected up to a total weight of > 200 g which was the amount to analyze undigested nutrients in feces as 3 repeats. In the apparent total tract digestibility analysis of the experimental breed, no difference in the digestibility of crude protein, crude fat, crude fiber, ash, and energy was observed regarding the moisture content of the food. Noteworthy, the digestibility of nitrogen free extract was significantly increased in senior dogs fed dry dog food compared with adult dogs fed the same diet, whereas no difference was observed between senior and adult dogs fed wet food. The small breed dogs showed similar results to the experimental breed dogs. However, the digestibility of crude fat was additionally affected by age and food type unlike the experimental breed dogs. This finding suggests that the food moisture content affects the digestibility of nutrients in dogs with aging. Hence, it may be helpful to determine the nutrient contents in foods for senior dogs depending on the food type.

3.
Sci Rep ; 11(1): 16334, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381138

ABSTRACT

Like humans, weight control in overweight dogs is associated with a longer life expectancy and a healthier life. Dietary supplements are one of the best strategies for controlling obesity and obesity-associated diseases. This study was conducted to assess the potential of black ginseng (BG) and silkworm (SW) as supplements for weight control in diet-induced overweight beagle dogs. To investigate the changes that occur in dogs administered the supplements, different obesity-related parameters, such as body condition score (BCS), blood fatty acid profile, transcriptome, and microbiome, were assessed in high energy diet (HD) and HD with BG + SW supplementation (HDT) groups of test animals. After 12 weeks of BG + SW supplementation, total cholesterol and triglyceride levels were reduced in the HDT group. In the transcriptome analysis, nine genes (NUGGC, EFR3B, RTP4, ACAN, HOXC4, IL17RB, SOX13, SLC18A2, and SOX4) that are known to be associated with obesity were found to be differentially expressed between the ND (normal diet) and HD groups as well as the HD and HDT groups. Significant changes in some taxa were observed between the HD and ND groups. These data suggest that the BG + SW supplement could be developed as dietary interventions against diet-induced obesity, and obesity-related differential genes could be important candidates in the mechanism of the anti-obesity effects of the BG + SW supplement.


Subject(s)
Biological Products/pharmacology , Bombyx/chemistry , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Overweight/drug therapy , Panax/chemistry , Transcriptome/drug effects , Animals , Diet, High-Fat/methods , Dietary Supplements , Dogs , Female , Male , Overweight/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL