Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nutrients ; 12(4)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218327

ABSTRACT

Cognitive decline is observed in aging and neurodegenerative diseases, including Alzheimer's disease (AD) and dementia. Intracellular energy produced via mitochondrial respiration is used in the regulation of synaptic plasticity and structure, including dendritic spine length and density, as well as for the release of neurotrophic factors involved in learning and memory. To date, a few synthetic agents for improving mitochondrial function have been developed for overcoming cognitive impairment. However, no natural compounds that modulate synaptic plasticity by directly targeting mitochondria have been developed. Here, we demonstrate that a mixture of Schisandra chinensis extract (SCE) and ascorbic acid (AA) improved cognitive function and induced synaptic plasticity-regulating proteins by enhancing mitochondrial respiration. Treatment of embryonic mouse hippocampal mHippoE-14 cells with a 4:1 mixture of SCE and AA increased basal oxygen consumption rate. We found that mice injected with the SCE-AA mixture showed enhanced learning and memory and recognition ability. We further observed that injection of the SCE-AA mixture in mice significantly increased expression of postsynaptic density protein 95 (PSD95), an increase that was correlated with enhanced brain-derived neurotrophic factor (BDNF) expression. These results demonstrate that a mixture of SCE and AA improves mitochondrial function and memory, suggesting that this natural compound mixture could be used to alleviate AD and aging-associated memory decline.


Subject(s)
Ascorbic Acid/pharmacology , Cell Respiration/drug effects , Cognition/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Plant Extracts/pharmacology , Schisandra/chemistry , Animals , Cell Line , Drug Synergism , Hippocampus/drug effects , Hippocampus/metabolism , Learning/drug effects , Male , Memory/drug effects , Mice , Oxygen Consumption/drug effects , Plant Extracts/chemistry , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism
2.
J Med Food ; 20(6): 535-541, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28570125

ABSTRACT

Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs), such as α-linolenic and linoleic acids, are essential fatty acids in mammals, because they cannot be synthesized de novo. However, fat-1 transgenic mice can synthesize omega-3 PUFAs from omega-6 PUFAs without dietary supplementation of omega-3, leading to abundant omega-3 PUFA accumulation in various tissues. In this study, we used fat-1 transgenic mice to investigate the role of omega-3 PUFAs in response to inflammatory pain. A high omega-3 PUFA tissue content attenuated formalin-induced pain sensitivity, microglial activation, inducible nitric oxide synthase expression, and the phosphorylation of NR2B, a subunit of the N-methyl-d-aspartate (NMDA) receptor. Our findings suggest that elevated omega-3 PUFA levels inhibit NMDA receptor activity in the spinal dorsal horn and modulate inflammatory pain transmission by regulating signal transmission at the spinal dorsal horn, leading to the attenuation of chemically induced inflammatory pain.


Subject(s)
Fatty Acids, Omega-3/administration & dosage , Pain/drug therapy , Pain/immunology , Animals , Dietary Supplements/analysis , Fatty Acids, Omega-6/administration & dosage , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , N-Methylaspartate/metabolism , Receptors, N-Methyl-D-Aspartate/immunology , Spinal Cord Dorsal Horn/drug effects , Spinal Cord Dorsal Horn/immunology
SELECTION OF CITATIONS
SEARCH DETAIL