Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Pollut ; 343: 123110, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38086506

ABSTRACT

Mercury (Hg) is a metallic trace element toxic for humans and wildlife that can originate from natural and anthropic sources. Hg spatial gradients have been found in seabirds from the Arctic and other oceans, suggesting contrasting toxicity risks across regions. Selenium (Se) plays a protective role against Hg toxicity, but its spatial distribution has been much less investigated than that of Hg. From 2015 to 2017, we measured spatial co-exposure of Hg and Se in blood samples of two seabird species, the Brünnich's guillemot (Uria lomvia) and the black-legged kittiwake (Rissa tridactyla) from 17 colonies in the Arctic and subarctic regions, and we calculated their molar ratios (Se:Hg), as a measure of Hg sequestration by Se and, therefore, of Hg exposure risk. We also evaluated concentration differences between species and ocean basins (Pacific-Arctic and Atlantic-Arctic), and examined the influence of trophic ecology on Hg and Se concentrations using nitrogen and carbon stable isotopes. In the Atlantic-Arctic ocean, we found a negative west-to-east gradient of Hg and Se for guillemots, and a positive west-to-east gradient of Se for kittiwakes, suggesting that these species are better protected from Hg toxicity in the European Arctic. Differences in Se gradients between species suggest that they do not follow environmental Se spatial variations. This, together with the absence of a general pattern for isotopes influence on trace element concentrations, could be due to foraging ecology differences between species. In both oceans, the two species showed similar Hg concentrations, but guillemots showed lower Se concentrations and Se:Hg than kittiwakes, suggesting a higher Hg toxicity risk in guillemots. Within species, neither Hg, nor Se or Se:Hg differed between both oceans. Our study highlights the importance of considering Se together with Hg, along with different species and regions, when evaluating Hg toxic effects on marine predators in international monitoring programs.


Subject(s)
Charadriiformes , Mercury , Selenium , Trace Elements , Animals , Humans , Mercury/analysis , Carbon Isotopes , Arctic Regions , Environmental Monitoring
2.
Mar Pollut Bull ; 181: 113870, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35835052

ABSTRACT

The concentrations of 13 trace elements were determined in 1032 muscles of 54 small-scale fisheries species collected from the Seychelles waters between 2013 and 2019. Overall, profiles were dominated by zinc (Zn) > arsenic (As) > iron (Fe) > copper (Cu) > selenium (Se), with the spiny lobsters, spanner crab and octopus exhibiting the highest levels of As, Cu and Zn while fish had higher Fe concentrations. Both taxonomy-dependent processes and ecological factors explained the interspecific differences of trace element profiles observed. A benefit-risk assessment revealed that crustaceans and cephalopods were good sources of Cu and Zn. One portion of any fish could provide 30-100 % of daily Se needs, and one portion of demersal and pelagic teleost fish could bring 5-20 % of Cu, Fe and Zn needs, especially for young adult and adult women. Finally, our analysis showed that there was very low health risks associated with small-scale fisheries consumption for the Seychelles population.


Subject(s)
Arsenic , Selenium , Trace Elements , Animals , Arsenic/analysis , Copper/analysis , Female , Fisheries , Fishes , Humans , Seafood/analysis , Selenium/analysis , Seychelles , Trace Elements/analysis , Zinc/analysis
3.
Environ Pollut ; 286: 117549, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34438486

ABSTRACT

Environmental contaminants affect ecosystems worldwide and have deleterious effects on biota. Non-essential mercury (Hg) and lead (Pb) concentrations are well documented in some taxa and are described to cause multiple detrimental effects on human and wildlife. Additionally, essential selenium (Se) is known to be toxic at high concentrations but, at lower concentrations, Se can protect organisms against Hg toxicity. Crocodilians are known to bioaccumulate contaminants. However, the effects of these contaminants on physiological processes remain poorly studied. In the present study, we quantified Hg, Pb and Se concentrations in spectacled caimans (Caiman crocodilus) and investigated the effects of these contaminants on several physiological processes linked to osmoregulatory, hepatic, endocrine and renal functions measured through blood parameters in 23 individuals. Mercury was related to disruption of osmoregulation (sodium levels), hepatic function (alkaline phosphatase levels) and endocrine processes (corticosterone levels). Lead was related to disruption of hepatic functions (glucose and alanine aminotransferase levels). Selenium was not related to any parameters, but the Se:Hg molar ratio was positively related to the Na+ and corticosterone concentrations, suggesting a potential protective effect against Hg toxicity. Overall, our results suggest that Hg and Pb alter physiological mechanisms in wild caimans and highlight the need to thoroughly investigate the consequences of trace element contamination in crocodilians.


Subject(s)
Alligators and Crocodiles , Mercury , Selenium , Trace Elements , Animals , Ecosystem , Humans , Mercury/toxicity
4.
Environ Pollut ; 228: 464-473, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28570991

ABSTRACT

Seabirds integrate bioaccumulative contaminants via food intake and have revealed geographical trends of contamination in a variety of ecosystems. Pre-fledging seabird chicks are particularly interesting as bioindicators of chemical contamination, because concentrations in their tissues reflect primarily dietary sources from the local environment. Here we measured 14 trace elements and 18 persistent organic pollutants (POPs) in blood of chicks of skuas that breed in four sites encompassing a large latitudinal range within the southern Indian Ocean, from Antarctica (Adélie Land, south polar skua Catharacta maccormicki), through subantarctic areas (Crozet and Kerguelen Islands, brown skua C. lonnbergi), to the subtropics (Amsterdam Island, C. lonnbergi). Stables isotopes of carbon (δ13C, feeding habitat) and nitrogen (δ15N, trophic position) were also measured to control for the influence of feeding habits on contaminant burdens. Concentrations of mercury (Hg) and selenium (Se) were very high at all the four sites, with Amsterdam birds having the highest concentrations ever reported in chicks worldwide (4.0 ± 0.8 and 646 ± 123 µg g-1 dry weight, respectively). Blood Hg concentrations showed a clear latitudinal pattern, increasing from chicks in Antarctica to chicks in the subantarctic and subtropical islands. Interestingly, blood Se concentrations showed similar between-population differences to Hg, suggesting its involvement in protective mechanisms against Hg toxicity. Chicks' POPs pattern was largely dominated by organochlorine pesticides, in particular DDT metabolites and hexachlorobenzene (HCB). Skua chicks from subantarctic islands presented high concentrations and diversity of POPs. By contrast, chicks from the Antarctic site overall had the lowest concentrations and diversity of both metallic and organic contaminants, with the exception of HCB and arsenic. Skua populations from these sites, being naturally exposed to different quantities of contaminants, are potentially good models for testing toxic effects in developing chicks in the wild.


Subject(s)
Charadriiformes/metabolism , Environmental Monitoring , Environmental Pollutants/metabolism , Mercury/metabolism , Selenium/metabolism , Animals , Antarctic Regions , Ecosystem , Geography , Hydrocarbons, Chlorinated/metabolism , Indian Ocean , Islands , Mercury/analysis , Pesticides/metabolism
5.
Sci Total Environ ; 423: 73-83, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22421087

ABSTRACT

Trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Zn) were investigated in the liver, kidneys, muscle and feathers of 31 black-tailed godwits (Limosa limosa) accidentally killed during catches by mist net in the Pertuis Charentais, Atlantic coast of France. Analyses of carbon and nitrogen stable isotope ratios were carried out in liver, muscle and feathers in order to elucidate dietary patterns and to determine whether differences in diet explained the variation in elemental uptake. This study also aimed to have a preliminary assessment of sub-lethal effects triggered by trace elements through the investigation of gene expressions by quantitative real-time PCR, antioxidant enzyme activities (catalase, superoxide dismutase, glutathione peroxidase), and metallothionein (MT) levels. The results showed that Cr and Ni concentrations in tissues of adults were lower than in juveniles in part because adults may have eliminated these trace elements through moulting. Except for Cd and Ni, trace element concentrations were negatively correlated to the body mass of godwits. Ag, As, Hg and Se concentrations were positively linked with the trophic position of birds. The diet could be considered as a fundamental route of exposure for these elements demonstrating therefore the qualitative linkage between dietary habits of godwits and their contaminant concentrations. Our results strongly suggest that even though trace element concentrations were mostly below toxicity threshold level, the elevated concentrations of As, Ag, Cd, Cu, Fe and Se may however trigger sub-lethal effects. Trace elements appear to enhance expression of genes involved in oxidative stress defence, which indicates the production of reactive oxygen species. Moreover, birds with the highest concentrations appeared to have an increased mitochondrial metabolism suggesting that the fight against trace element toxicity requires additional energetic needs notably to produce detoxification mechanisms such as metallothioneins.


Subject(s)
Avian Proteins/physiology , Charadriiformes/metabolism , Metallothionein/physiology , Metals, Heavy/pharmacokinetics , Animals , Arsenic/pharmacokinetics , Arsenic/pharmacology , Avian Proteins/genetics , Avian Proteins/metabolism , Body Size , Charadriiformes/genetics , Charadriiformes/physiology , Diet , Feathers/metabolism , Feeding Behavior , France , Gene Expression Regulation/drug effects , Inactivation, Metabolic , Kidney/metabolism , Liver/metabolism , Metallothionein/metabolism , Metals, Heavy/pharmacology , Molting , Muscles/metabolism , Oxidative Stress/genetics , Selenium/pharmacokinetics , Selenium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL