Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Chem Biol ; 16(6): 667-675, 2020 06.
Article in English | MEDLINE | ID: mdl-32393901

ABSTRACT

N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.


Subject(s)
Behavior, Animal/drug effects , Enzyme Inhibitors/chemistry , Lipid Metabolism/drug effects , Phosphatidylethanolamines/metabolism , Phospholipase D/antagonists & inhibitors , Amidohydrolases/metabolism , Animals , Blood Proteins/metabolism , Brain/metabolism , Cannabinoid Receptor Antagonists/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Fear/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Receptors, Cannabinoid/metabolism , Signal Transduction
2.
Regul Toxicol Pharmacol ; 109: 104483, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31580887

ABSTRACT

JD5037 is a novel peripherally restricted CB1 receptor (CB1R) inverse agonist being developed for the treatment of visceral obesity and its metabolic complications, including nonalcoholic fatty liver disease and dyslipidemia. JD5037 was administered by oral gavage at 10, 40, and 150 mg/kg/day dose levels for up to 34 days to Sprague Dawley rats, and at 5, 20, and 75 mg/kg/day dose levels for 28 consecutive days to Beagle dogs. In rats, higher incidences of stereotypic behaviors were observed in 10 mg/kg females and 40 mg/kg males, and slower responses for reflex and sensory tests were observed only in males at 10 and 40 mg/kg during neurobehavioral testing. Sporadic minimal incidences of decreased activity (males) and seizures (both sexes) were observed in rats during daily clinical observations, without any clear dose-relationship. Male dogs at 75 mg/kg during treatment period, but not recovery period, had an increased incidence of gut associated lymphoid tissue hyperplasia and inflammation in the intestine. In both species, highest dose resulted in lower AUCs indicative of non-linear kinetics. Free access to food increased the plasma AUC∞ by ~4.5-fold at 20 mg/kg in dogs, suggesting presence of food may help in systemic absorption of JD5037 in dogs. Based on the study results, 150 mg/kg/day in rats, and 20 and 75 mg/kg/day doses in male and female dogs, respectively, were determined to be the no-observed-adverse-effect-levels (NOAELs).


Subject(s)
Drugs, Investigational/toxicity , Pyrazoles/toxicity , Receptor, Cannabinoid, CB1/agonists , Seizures/chemically induced , Stereotyped Behavior/drug effects , Sulfonamides/toxicity , Animals , Area Under Curve , Behavior, Animal/drug effects , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drugs, Investigational/therapeutic use , Female , Humans , Investigational New Drug Application , Male , No-Observed-Adverse-Effect Level , Non-alcoholic Fatty Liver Disease/drug therapy , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Rats , Rats, Sprague-Dawley , Sex Factors , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use
3.
Br J Pharmacol ; 175(2): 320-334, 2018 01.
Article in English | MEDLINE | ID: mdl-28107775

ABSTRACT

BACKGROUND AND AIMS: ß-Caryophyllene (BCP) is a plant-derived FDA approved food additive with anti-inflammatory properties. Some of its beneficial effects in vivo are reported to involve activation of cannabinoid CB2 receptors that are predominantly expressed in immune cells. Here, we evaluated the translational potential of BCP using a well-established model of chronic and binge alcohol-induced liver injury. METHODS: In this study, we investigated the effects of BCP on liver injury induced by chronic plus binge alcohol feeding in mice in vivo by using biochemical assays, real-time PCR and histology analyses. Serum and hepatic BCP levels were also determined by GC/MS. RESULTS: Chronic treatment with BCP alleviated the chronic and binge alcohol-induced liver injury and inflammation by attenuating the pro-inflammatory phenotypic `M1` switch of Kupffer cells and by decreasing the expression of vascular adhesion molecules intercellular adhesion molecule 1, E-Selectin and P-Selectin, as well as the neutrophil infiltration. It also beneficially influenced hepatic metabolic dysregulation (steatosis, protein hyperacetylation and PPAR-α signalling). These protective effects of BCP against alcohol-induced liver injury were attenuated in CB2 receptor knockout mice, indicating that the beneficial effects of this natural product in liver injury involve activation of these receptors. Following acute or chronic administration, BCP was detectable both in the serum and liver tissue homogenates but not in the brain. CONCLUSIONS: Given the safety of BCP in humans, this food additive has a high translational potential in treating or preventing hepatic injury associated with oxidative stress, inflammation and steatosis. LINKED ARTICLES: This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Ethanol/toxicity , Fatty Liver/drug therapy , Inflammation/drug therapy , Sesquiterpenes/therapeutic use , Acetylation/drug effects , Animals , Brain/metabolism , E-Selectin/biosynthesis , Ethanol/pharmacokinetics , Fatty Liver/chemically induced , Intercellular Adhesion Molecule-1/biosynthesis , Kupffer Cells/drug effects , Liver/metabolism , Male , Mice , Mice, Knockout , Neutrophil Infiltration/drug effects , P-Selectin/biosynthesis , PPAR alpha/metabolism , Polycyclic Sesquiterpenes , Receptor, Cannabinoid, CB2/genetics , Sesquiterpenes/blood , Sesquiterpenes/pharmacokinetics
4.
Mol Metab ; 6(10): 1113-1125, 2017 10.
Article in English | MEDLINE | ID: mdl-29031713

ABSTRACT

OBJECTIVE: In visceral obesity, an overactive endocannabinoid/CB1 receptor (CB1R) system promotes increased caloric intake and decreases energy expenditure, which are mitigated by global or peripheral CB1R blockade. In mice with diet-induced obesity (DIO), inhibition of food intake by the peripherally restricted CB1R antagonist JD5037 could be attributed to endogenous leptin due to the rapid reversal of hyperleptinemia that maintains leptin resistance, but the signaling pathway engaged by leptin has remained to be determined. METHODS: We analyzed the hypothalamic circuitry targeted by leptin following chronic treatment of DIO mice with JD5037. RESULTS: Leptin treatment or an increase in endogenous leptin following fasting/refeeding induced STAT3 phosphorylation in neurons in the arcuate nucleus (ARC) in lean and JD5037-treated DIO mice, but not in vehicle-treated DIO animals. Co-localization of pSTAT3 in leptin-treated mice was significantly less common with NPY+ than with POMC+ ARC neurons. The hypophagic effect of JD5037 was absent in melanocortin-4 receptor (MC4R) deficient obese mice or DIO mice treated with a MC4R antagonist, but was maintained in NPY-/- mice kept on a high-fat diet. CONCLUSIONS: Peripheral CB1R blockade in DIO restores sensitivity to endogenous leptin, which elicits hypophagia via the re-activation of melanocortin signaling in the ARC.


Subject(s)
Leptin/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptors, Leptin/drug effects , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Body Weight/physiology , Cannabinoids/metabolism , Diet, High-Fat , Dietary Fats/metabolism , Eating/physiology , Hypothalamus/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Neuropeptide Y/metabolism , Obesity/metabolism , Pro-Opiomelanocortin/metabolism , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/physiology , Receptor, Melanocortin, Type 4/metabolism , Receptors, Cannabinoid/metabolism , Receptors, Leptin/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Sulfonamides/pharmacology
5.
Mol Metab ; 5(12): 1187-1199, 2016 12.
Article in English | MEDLINE | ID: mdl-27900261

ABSTRACT

OBJECTIVE: Extreme obesity is a core phenotypic feature of Prader-Willi syndrome (PWS). Among numerous metabolic regulators, the endocannabinoid (eCB) system is critically involved in controlling feeding, body weight, and energy metabolism, and a globally acting cannabinoid-1 receptor (CB1R) blockade reverses obesity both in animals and humans. The first-in-class CB1R antagonist rimonabant proved effective in inducing weight loss in adults with PWS. However, it is no longer available for clinical use because of its centrally mediated, neuropsychiatric, adverse effects. METHODS: We studied eCB 'tone' in individuals with PWS and in the Magel2-null mouse model that recapitulates the major metabolic phenotypes of PWS and determined the efficacy of a peripherally restricted CB1R antagonist, JD5037 in treating obesity in these mice. RESULTS: Individuals with PWS had elevated circulating levels of 2-arachidonoylglycerol and its endogenous precursor and breakdown ligand, arachidonic acid. Increased hypothalamic eCB 'tone', manifested by increased eCBs and upregulated CB1R, was associated with increased fat mass, reduced energy expenditure, and decreased voluntary activity in Magel2-null mice. Daily chronic treatment of obese Magel2-null mice and their littermate wild-type controls with JD5037 (3 mg/kg/d for 28 days) reduced body weight, reversed hyperphagia, and improved metabolic parameters related to their obese phenotype. CONCLUSIONS: Dysregulation of the eCB/CB1R system may contribute to hyperphagia and obesity in Magel2-null mice and in individuals with PWS. Our results demonstrate that treatment with peripherally restricted CB1R antagonists may be an effective strategy for the management of severe obesity in PWS.


Subject(s)
Prader-Willi Syndrome/drug therapy , Prader-Willi Syndrome/metabolism , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Sulfonamides/pharmacology , Adult , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Arachidonic Acids/blood , Body Weight/drug effects , Case-Control Studies , Disease Models, Animal , Endocannabinoids/blood , Endocannabinoids/metabolism , Female , Glycerides/blood , Humans , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Prader-Willi Syndrome/blood , Proteins/genetics , Proteins/metabolism , Receptor, Cannabinoid, CB1/metabolism , Weight Loss/drug effects
6.
Development ; 143(4): 609-22, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26884397

ABSTRACT

Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function.


Subject(s)
Liver/embryology , Liver/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Signal Transduction , Zebrafish Proteins/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Animals , Cannabinoids/metabolism , Cell Count , Cell Proliferation/drug effects , Cysteine/pharmacology , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Metabolomics , Methionine/metabolism , Mutation/genetics , Organ Size/drug effects , Signal Transduction/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL