Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Molecules ; 28(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37764216

ABSTRACT

Cardiovascular diseases (CVDs) are considered the predominant cause of death globally. An abnormal increase in biomarkers of oxidative stress and inflammation are consistently linked with the development and even progression of metabolic diseases, including enhanced CVD risk. Coffee is considered one of the most consumed beverages in the world, while reviewed evidence regarding its capacity to modulate biomarkers of oxidative stress and inflammation remains limited. The current study made use of prominent electronic databases, including PubMed, Google Scholar, and Scopus to retrieve information from randomized controlled trials reporting on any association between coffee consumption and modulation of biomarkers of oxidative stress and inflammation in healthy individuals or those at increased risk of developing CVD. In fact, summarized evidence indicates that coffee consumption, mainly due to its abundant antioxidant properties, can reduce biomarkers of oxidative stress and inflammation, which can be essential in alleviating the CVD risk in healthy individuals. However, more evidence suggests that regular/prolonged use or long term (>4 weeks) consumption of coffee appeared to be more beneficial in comparison with short-term intake (<4 weeks). These positive effects are also observed in individuals already presenting with increased CVD risk, although such evidence is very limited. The current analysis of data highlights the importance of understanding how coffee consumption can be beneficial in strengthening intracellular antioxidants to alleviate pathological features of oxidative stress and inflammation to reduce CVD risk within the general population. Also covered within the review is essential information on the metabolism and bioavailability profile of coffee, especially caffeine as one of its major bioactive compounds.


Subject(s)
Cardiovascular Diseases , Coffee , Humans , Cardiovascular Diseases/prevention & control , Oxidative Stress , Antioxidants , Biomarkers , Inflammation
2.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37107339

ABSTRACT

Coenzyme Q10 (CoQ10) bioavailability in vivo is limited due to its lipophilic nature. Moreover, a large body of evidence in the literature shows that muscle CoQ10 uptake is limited. In order to address cell specific differences in CoQ uptake, we compared cellular CoQ10 content in cultured human dermal fibroblasts and murine skeletal muscle cells that were incubated with lipoproteins from healthy volunteers and enriched with different formulations of CoQ10 following oral supplementation. Using a crossover design, eight volunteers were randomized to supplement 100 mg/daily CoQ10 for two weeks, delivered both in phytosome form (UBQ) as a lecithin formulation and in CoQ10 crystalline form. After supplementation, plasma was collected for CoQ10 determination. In the same samples, low density lipoproteins (LDL) were extracted and normalized for CoQ10 content, and 0.5 µg/mL in the medium were incubated with the two cell lines for 24 h. The results show that while both formulations were substantially equivalent in terms of plasma bioavailability in vivo, UBQ-enriched lipoproteins showed a higher bioavailability compared with crystalline CoQ10-enriched ones both in human dermal fibroblasts (+103%) and in murine skeletal myoblasts (+48%). Our data suggest that phytosome carriers might provide a specific advantage in delivering CoQ10 to skin and muscle tissues.

3.
Antioxidants (Basel) ; 11(2)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35204095

ABSTRACT

The levels of bioactive compounds in broccoli and their bioavailability following broccoli intake can be affected by the cooking procedures used for vegetable preparation. In the present pilot study, we compared the human plasma bioavailability of antioxidant compounds (ß-carotene, lutein and isothiocyanate) and of phylloquinone (vitamin K) on seven volunteers before and after the administration of boiled and steamed broccoli. Moreover, plasma isothiocyanate (ITCs) levels were also evaluated after the administration of a single dose of BroccoMax®, a dietary supplement containing GLSs with active myrosinase. Steam-cooking has been demonstrated to promote higher plasma bioavailability in ITCs than boiling (AUCSTEAMED = 417.4; AUCBOILED = 175.3) and is comparable to that reached following the intake of BroccoMax®, a supplement containing glucoraphanin and active myrosinase (AUC = 450.1). However, the impact of boiling and steaming treatment on plasma bioavailability of lipophilic antioxidants (lutein and ß-carotene) and of phylloquinone was comparable. The lutein and ß-carotene plasma levels did not change after administration of steamed or boiled broccoli. Conversely, both treatments led to a similar increase of phylloquinone plasma levels. Considering the antioxidant action and the potential chemopreventive activity of ITCs, steaming treatments can be considered the most suitable cooking method to promote the health benefits of broccoli in the diet.

4.
Life Sci ; 286: 120068, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34688697

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of mortality in patients with type 2 diabetes (T2D). The conventional therapies seem to offer minimal long-term cardioprotection against diabetes-related complications in patients living with T2D. There is a growing interest in understanding the therapeutic effects of food-derived bioactive compounds in protecting or managing these metabolic diseases. This includes uncovering the therapeutic potential of fat-soluble micronutrients such as vitamin K, which are abundantly found in green leafy vegetables. We searched the major electronic databases including PubMed, Web of Sciences, Scopus, Google Scholar and Science direct. The search retrieved randomized clinical trials and preclinical studies, reporting on the impact of vitamin K on CVD-related complications in T2D. The current review updates clinical evidence on the therapeutic benefits of vitamin K by attenuating CVD-risk factors such as blood lipid profiles, blood pressure, as well as markers of oxidative stress and inflammation in patients with T2D. Importantly, the summarized preclinical evidence provides a unique perspective into the pathophysiological mechanisms that could be targeted by vitamin K in the primary prevention of T2D-related complications. Lastly, this review further explores the controversies related to the cardioprotective effects of vitamin K, and also provides the basic information such as the source and bioavailability profile of this micronutrient is covered to highlight its therapeutic potential.


Subject(s)
Cardiovascular Diseases/prevention & control , Vitamin K/metabolism , Vitamin K/physiology , Cardiotonic Agents/pharmacology , Diabetes Complications/prevention & control , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Dietary Supplements , Humans , Micronutrients/metabolism , Primary Prevention , Trace Elements , Vitamins
5.
Free Radic Biol Med ; 165: 282-288, 2021 03.
Article in English | MEDLINE | ID: mdl-33482334

ABSTRACT

Coenzyme Q10 (CoQ10) is an endogenous lipophilic quinone found in equilibrium between its oxidised (ubiquinone) and reduced (ubiquinol) form, ubiquitous in biological membranes and endowed with antioxidant and bioenergetic properties, both crucial to the ageing process. CoQ10 biosynthesis decreases with age in different tissues including skin and its biosynthesis can be modulated by 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors such as statins. Statin-induced CoQ10 deprivation has previously been shown to be associated with the development of a senescence phenotype in cultured human dermal fibroblasts (HDF), hence this model was used to further investigate the role of CoQ10 in skin ageing. The present study aimed to compare the bioavailability of exogenously added CoQ10, in the form of ubiquinone or ubiquinol, to CoQ10-deprived HDF, and to determine their efficacy in rescuing the senescent phenotype induced by CoQ10 deprivation. First, additional senescence markers were implemented to further support the pro-ageing effect of statin-induced CoQ10 deprivation in HDF. Indeed, numerous senescence-associated secretory phenotype (SASP) markers such as p21, IL-8, CXCL1, and MMP-1 were upregulated, whereas components of the extracellular matrix were downregulated (elastin, collagen type 1). Next, we showed that CoQ10 supplementation to statin-treated HDF was able to counteract CoQ10 deprivation and rescued the development of selected senescence/ageing markers in HDF. Ubiquinol resulted more bioavailable than ubiquinone at the same concentration (15 µg/mL) and it significantly improved the cellular oxidative status even within isolated mitochondria highlighting an effective subcellular delivery. Ubiquinol was also more efficient compared to ubiquinone in reverting the expression of the senescent phenotype, quantified in terms of ß-galactosidase positivity, p21, collagen type 1, and elastin at the gene and protein expression levels. In conclusion, our results highlight the pivotal role of CoQ10 for skin vitality and strongly support the use of both forms as a beneficial and effective anti-ageing skin care treatment.


Subject(s)
Aging , Ubiquinone , Antioxidants/pharmacology , Fibroblasts , Humans , Ubiquinone/analogs & derivatives
6.
Clin Nutr ESPEN ; 41: 77-87, 2021 02.
Article in English | MEDLINE | ID: mdl-33487310

ABSTRACT

BACKGROUND AND AIMS: There is a general interest in understanding how the consumption of tea impacts cardiovascular function in individuals at risk of developing cardiovascular disease (CVD). The current review focuses on evidence from randomized controlled trials (RCTs) reporting on associations between tea consumption and endothelial function, in the primary and secondary prevention of coronary artery disease (CAD). METHODS: PubMed, EMBASE, and Google Scholar databases/search engines were used to identify eligible studies. Included studies had to report on the impact of tea supplementation of endothelial function or CAD related markers. In addition to flow-mediated dilation (FMD), makers of oxidative stress and inflammation such as oxidized low-density lipoprotein and C-reactive protein were considered as determinants of endothelial function. A total of 34 RCTs met the inclusion criteria, and these reported on the impact of tea consumption on endothelial function in individuals at risk of CVD or patients with CAD. RESULTS: The current qualitative synthesis of literature demonstrates that beyond enhancing nitric oxide bioavailability and lowering blood pressure, regular consumption of tea and its active ingredients such as epigallocatechin gallate may be beneficial in reducing markers of oxidative stress and inflammation. Moreover, the reduction of oxidized low-density lipoprotein and C-reactive protein levels, could be a sign of improved endothelial function in individuals at increased risk of developing CVD. CONCLUSIONS: The cumulative evidence also suggests that the development of epigallocatechin gallate as a nutraceutical or enriching foods with this bioactive compound could be a feasible strategy to improve endothelial function and lower CVD-risk. However, well-designed RCTs are still necessary to confirm long-term benefits of tea consumption on vascular health.


Subject(s)
Coronary Artery Disease , Coronary Artery Disease/prevention & control , Dietary Supplements , Humans , Randomized Controlled Trials as Topic , Secondary Prevention , Tea
7.
Antioxidants (Basel) ; 9(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081423

ABSTRACT

Endothelial dysfunction represents the initial stage in atherosclerotic lesion development which occurs physiologically during aging, but external factors like diet, sedentary lifestyle, smoking accelerate it. Since cigarette smoking promotes oxidative stress and cell damage, we developed an in vitro model of endothelial dysfunction using vascular cells exposed to chemicals present in cigarette smoke, to help elucidate the protective effects of anti-inflammatory and antioxidant agents, such as ubiquinol and vitamin K, that play a fundamental role in vascular health. Treatment of both young and senescent Human Umbilical Vein Endothelial Cells (HUVECs) for 24 h with cigarette smoke extract (CSE) decreased cellular viability, induced apoptosis via reactive oxygen species (ROS) imbalance and mitochondrial dysfunction and promoted an inflammatory response. Moreover, the senescence marker SA-ß-galactosidase was observed in both young CSE-exposed and in senescent HUVECs suggesting that CSE exposure accelerates aging in endothelial cells. Supplementation with 10 µM ubiquinol and menaquinone-7 (MK7) counteracted oxidative stress and inflammation, resulting in improved viability, decreased apoptosis and reduced SA-ß-galactosidase, but were ineffective against CSE-induced mitochondrial permeability transition pore opening. Other K vitamins tested like menaquinone-4 (MK4) and menaquinone-1 (K1) were less protective. In conclusion, CSE exposure was able to promote a stress-induced senescent phenotype in young endothelial cells likely contributing to endothelial dysfunction in vivo. Furthermore, the molecular changes encountered could be offset by ubiquinol and menaquinone-7 supplementation, the latter resulting the most bioactive K vitamin in counteracting CSE-induced damage.

8.
Aging (Albany NY) ; 12(15): 15514-15531, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32741773

ABSTRACT

Epidemiological data show a rise in the mean age of patients affected by heart disease undergoing cardiac surgery. Senescent myocardium reduces the tolerance to ischemic stress and there are indications about age-associated deficit in post-operative cardiac performance. Coenzyme Q10 (CoQ10), and more specifically its reduced form ubiquinol (QH), improve several conditions related to bioenergetic deficit or increased exposure to oxidative stress. This trial (Eudra-CT 2009-015826-13) evaluated the clinical and biochemical effects of ubiquinol in 50 elderly patients affected by severe aortic stenosis undergoing aortic valve replacement and randomized to either placebo or 400 mg/day ubiquinol from 7 days before to 5 days after surgery. Plasma and cardiac tissue CoQ10 levels and oxidative status, circulating troponin I, CK-MB (primary endpoints), IL-6 and S100B were assessed. Moreover, main cardiac adverse effects, NYHA class, contractility and myocardial hypertrophy (secondary endpoints) were evaluated during a 6-month follow-up visit. Ubiquinol treatment counteracted the post-operative plasma CoQ10 decline (p<0.0001) and oxidation (p=0.038) and curbed the post-operative increase in troponin I (QH, 1.90 [1.47-2.48] ng/dL; placebo, 4.03 [2.45-6.63] ng/dL; p=0.007) related to cardiac surgery. Moreover, ubiquinol prevented the adverse outcomes that might have been associated with defective left ventricular ejection fraction recovery in elderly patients.


Subject(s)
Aortic Valve Stenosis/surgery , Aortic Valve/surgery , Heart Valve Prosthesis Implantation , Postoperative Complications/prevention & control , Ubiquinone/analogs & derivatives , Age Factors , Aged , Aged, 80 and over , Aortic Valve Stenosis/metabolism , Dietary Supplements , Double-Blind Method , Female , Humans , Male , Ubiquinone/metabolism , Ubiquinone/therapeutic use
9.
Int J Mol Sci ; 21(9)2020 May 04.
Article in English | MEDLINE | ID: mdl-32375340

ABSTRACT

Evidence from randomized controlled trials (RCTs) suggests that coenzyme Q10 (CoQ10) can regulate adipokine levels to impact inflammation and oxidative stress in conditions of metabolic syndrome. Here, prominent electronic databases such as MEDLINE, Cochrane Library, and EMBASE were searched for eligible RCTs reporting on any correlation between adipokine levels and modulation of inflammation and oxidative stress in individuals with metabolic syndrome taking CoQ10. The risk of bias was assessed using the modified Black and Downs checklist, while the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool was used to evaluate the quality of evidence. Results from the current meta-analysis, involving 318 participants, showed that CoQ10 supplementation in individuals with metabolic syndrome increased adiponectin levels when compared to those on placebo (SMD: 1.44 [95% CI: -0.13, 3.00]; I2 = 96%, p < 0.00001). Moreover, CoQ10 supplementation significantly lowered inflammation markers in individuals with metabolic syndrome in comparison to those on placebo (SMD: -0.31 [95% CI: -0.54, -0.08]; I2 = 51%, p = 0.07). Such benefits with CoQ10 supplementation were related to its ameliorative effects on lipid peroxidation by reducing malondialdehyde levels, concomitant to improving glucose control and liver function. The overall findings suggest that optimal regulation of adipokine function is crucial for the beneficial effects of CoQ10 in improving metabolic health.


Subject(s)
Adipokines/metabolism , Biomarkers , Dietary Supplements , Lipid Peroxidation/drug effects , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Ubiquinone/analogs & derivatives , Animals , Disease Management , Disease Susceptibility , Humans , Inflammation/drug therapy , Inflammation/etiology , Inflammation/metabolism , Metabolic Syndrome/drug therapy , Metabolic Syndrome/pathology , Oxidative Stress/drug effects , Publication Bias , Ubiquinone/administration & dosage
10.
Nutrients ; 12(4)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326664

ABSTRACT

In this randomized, double-blind, single-center trial (ANZCTR number ACTRN12619000436178) we aimed to investigate changes in endothelium-dependent vasodilation induced by ubiquinol, the reduced form of coenzyme Q10 (CoQ10), in healthy subjects with moderate dyslipidemia. Fifty-one subjects with low-density lipoprotein (LDL) cholesterol levels of 130-200 mg/dL, not taking statins or other lipid lowering treatments, moderate (2.5%-6.0%) endothelial dysfunction as measured by flow-mediated dilation (FMD) of the brachial artery, and no clinical signs of cardiovascular disease were randomized to receive either ubiquinol (200 or 100 mg/day) or placebo for 8 weeks. The primary outcome measure was the effect of ubiquinol supplementation on FMD at the end of the study. Secondary outcomes included changes in FMD on week 4, changes in total and oxidized plasma CoQ10 on week 4 and week 8, and changes in serum nitrate and nitrite levels (NOx), and plasma LDL susceptibility to oxidation in vitro on week 8. Analysis of the data of the 48 participants who completed the study demonstrated a significantly increased FMD in both treated groups compared with the placebo group (200 mg/day, +1.28% ± 0.90%; 100 mg/day, +1.34% ± 1.44%; p < 0.001) and a marked increase in plasma CoQ10, either total (p < 0.001) and reduced (p < 0.001). Serum NOx increased significantly and dose-dependently in all treated subjects (p = 0.016), while LDL oxidation lag time improved significantly in those receiving 200 mg/day (p = 0.017). Ubiquinol significantly ameliorated dyslipidemia-related endothelial dysfunction. This effect was strongly related to increased nitric oxide bioavailability and was partly mediated by enhanced LDL antioxidant protection.


Subject(s)
Dyslipidemias/drug therapy , Dyslipidemias/physiopathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Ubiquinone/analogs & derivatives , Vasodilation/drug effects , Adult , Aged , Antioxidants , Biological Availability , Brachial Artery/physiopathology , Double-Blind Method , Female , Humans , Male , Middle Aged , Nitric Oxide/blood , Nitric Oxide/metabolism , Severity of Illness Index , Ubiquinone/administration & dosage , Ubiquinone/pharmacology
11.
Molecules ; 24(9)2019 May 02.
Article in English | MEDLINE | ID: mdl-31052590

ABSTRACT

Type 2 diabetic patients possess a two to four fold-increased risk for Cardiovascular Diseases (CVD). Hyperglycemia, oxidative stress associated with endothelial dysfunction and dyslipidemia are regarded as pro-atherogenic mechanisms of CVD. In this study, high-fat diet-induced diabetic and non-diabetic vervet monkeys were treated with 90 mg/kg of aspalathin-rich green rooibos extract (Afriplex GRT) for 28 days, followed by a 1-month wash-out period. Supplementation showed improvements in both the intravenous glucose tolerance test (IVGTT) glycemic area under curve (AUC) and total cholesterol (due to a decrease of the low-density lipoprotein [LDL]) values in diabetics, while non-diabetic monkeys benefited from an increase in high-density lipoprotein (HDL) levels. No variation of plasma coenzyme Q10 (CoQ10) were found, suggesting that the LDL-lowering effect of Afriplex GRT could be related to its ability to modulate the mevalonate pathway differently from statins. Concerning the plasma oxidative status, a decrease in percentage of oxidized CoQ10 and circulating oxidized LDL (ox-LDL) levels after supplementation was observed in diabetics. Finally, the direct correlation between the amount of oxidized LDL and total LDL concentration, and the inverse correlation between ox-LDL and plasma CoQ10 levels, detected in the diabetic monkeys highlighted the potential cardiovascular protective role of green rooibos extract. Taken together, these findings suggest that Afriplex GRT could counteract hyperglycemia, oxidative stress and dyslipidemia, thereby lowering fundamental cardiovascular risk factors associated with diabetes.


Subject(s)
Chalcones/pharmacology , Cholesterol, LDL/blood , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat/adverse effects , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Animals , Biomarkers , Blood Glucose/drug effects , Chlorocebus aethiops , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Female , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Lipids/blood , Lipoproteins, LDL/blood , Male , Plant Extracts/pharmacology , Ubiquinone/analogs & derivatives , Ubiquinone/blood
12.
Molecules ; 24(5)2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30813554

ABSTRACT

Menaquinone-7 (MK7) is a member of the vitamin K family in which interest has considerably increased over the last decade, mainly due to its beneficial role in human health. MK7 can be produced by synthesis or fermentation, and its purity profile can differ depending on methodologies and extraction procedures. Finished formulations show a high heterogeneity of purity profiles, as well as frequent discrepancies in the nominal content, compared to the actual title. The present study compared purity profiles of different raw material and related them to their stability in normal (12 months/25 °C/60%RH) and accelerated conditions (6 months/40 °C/75% RH) in order to test their performance in the presence of different common excipients. Results showed higher purity profile results in enhanced stability, and this could explain title discrepancies found in finished products, which are present on the market worldwide.


Subject(s)
Drug Compounding/methods , Vitamin K 2/analogs & derivatives , Chromatography, High Pressure Liquid , Drug Contamination , Drug Stability , Fermentation , Molecular Structure , Powders , Vitamin K 2/analysis , Vitamin K 2/chemical synthesis , Vitamin K 2/chemistry
13.
Oxid Med Cell Longev ; 2018: 5469159, 2018.
Article in English | MEDLINE | ID: mdl-30405877

ABSTRACT

Reactive oxygen species (ROS) production in the skin is among the highest compared to other organs, and a clear correlation exists between ROS production and skin aging. Many attempts are underway to reduce oxidative stress in the skin by topical treatment or supplementation with antioxidants/cosmeceuticals, and cultures of human dermal fibroblasts (HDF) are widely used for these studies. Here, we examined the influence of oxygen tension on cell aging in HDF and how this impacted ROS production, the enzymatic and nonenzymatic antioxidant response system, and the efficacy of this defense system in limiting DNA damage and in modulating gene expression of proteins involved in the extracellular matrix, linked to skin aging. We investigated a selection of parameters that represent and reflect the behavior of cellular responses to aging and oxygen tension. Serial passaging of HDF under normoxia (21%) and hypoxia (5%) leads to cell aging as confirmed by ß-galactosidase activity, p16 expression, and proliferation rate. However, in HDF under 21% O2, markers of aging were significantly increased compared to those under 5% O2 at matched cell passages despite having lower levels of intracellular ROS and higher levels of CoQ10, total GSH, SOD1, SOD3, and mitochondrial superoxide anion. miRNA-181a, which is known to be upregulated in HDF senescence, was also analyzed, and indeed, its expression was significantly increased in old cells at 21% O2 compared to those at 5% O2. Upregulation of MMP1 and downregulation of COL1A1 along with increased DNA damage were also observed under 21% O2 vs 5% O2. The data highlight that chronic exposure to atmospheric 21% O2 is able to trigger hormetic adaptive responses in HDF that however fail, in the long term, to prevent cellular aging. This information could be useful in further investigating molecular mechanisms involved in adaptation of skin fibroblasts to oxidative stress and may provide useful hints in addressing antiaging strategies.


Subject(s)
Cellular Senescence , Dermis/pathology , Fibroblasts/pathology , Oxidative Stress , Biomarkers/metabolism , Catalase/genetics , Catalase/metabolism , Cell Hypoxia/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , DNA Damage , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Glutathione/metabolism , Humans , Intracellular Space/metabolism , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Oxygen/pharmacology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxides/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism
14.
Redox Rep ; 23(1): 136-145, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29734881

ABSTRACT

OBJECTIVES: Physical exercise significantly impacts the biochemistry of the organism. Ubiquinone is a key component of the mitochondrial respiratory chain and ubiquinol, its reduced and active form, is an emerging molecule in sport nutrition. The aim of this study was to evaluate the effect of ubiquinol supplementation on biochemical and oxidative stress indexes after an intense bout of exercise. METHODS: 21 male young athletes (26 + 5 years of age) were randomized in two groups according to a double blind cross-over study, either supplemented with ubiquinol (200 mg/day) or placebo for 1 month. Blood was withdrawn before and after a single bout of intense exercise (40 min run at 85% maxHR). Physical performance, hematochemical parameters, ubiquinone/ubiquinol plasma content, intracellular reactive oxygen species (ROS) level, mitochondrial membrane depolarization, paraoxonase activity and oxidative DNA damage were analyzed. RESULTS: A single bout of intense exercise produced a significant increase in most hematochemical indexes, in particular CK and Mb while, on the contrary, normalized coenzyme Q10 plasma content decreased significantly in all subjects. Ubiquinol supplementation prevented exercise-induced CoQ deprivation and decrease in paraoxonase activity. Moreover at a cellular level, in peripheral blood mononuclear cells, ubiquinol supplementation was associated with a significant decrease in cytosolic ROS while mitochondrial membrane potential and oxidative DNA damage remained unchanged. DISCUSSION: Data highlights a very rapid dynamic of CoQ depletion following intense exercise underlying an increased demand by the organism. Ubiquinol supplementation minimized exercise-induced depletion and enhanced plasma and cellular antioxidant levels but it was not able to improve physical performance indexes or markers of muscular damage.


Subject(s)
Athletes , Exercise/physiology , Ubiquinone/analogs & derivatives , Adult , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Humans , Male , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Ubiquinone/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL