Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Headache Pain ; 24(1): 86, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452281

ABSTRACT

BACKGROUND: Mindfulness gained considerable attention for migraine management, but RCTs are lacking. We aimed to assess the efficacy of a six-sessions mindfulness-based treatment added to treatment as usual (TaU) in patients with Chronic Migraine (CM) and Medication Overuse Headache (MOH) on headache frequency, medication intake, quality of life, disability, depression and anxiety, cutaneous allodynia, awareness of inner states, work-related difficulties, and disease cost. METHODS: In this Phase-III single-blind RCT carried out in a specialty Italian headache center, 177 patients with CM and MOH were randomized 1:1 to either TaU (withdrawal from overused drugs, education on proper medication use and lifestyle issues, and tailored prophylaxis) or mindfulness-based intervention added to TaU (TaU + MIND). The mindfulness-based intervention consisted of six group session of mindfulness practice and 7-10 min daily self-practice. The primary endpoint was the achievement of ≥ 50% headache frequency reduction at 12 months compared to baseline, and was analyzed on an intention-to-treat principle using Pearson's Chi-Squared test. Secondary endpoints included medication intake, quality of life (QoL), disability, depression and anxiety, cutaneous allodynia, awareness of inner states, work-related difficulties, and disease cost. The secondary endpoints were analyzed using per-protocol linear mixed models. RESULTS: Out of the 177 participants 89 were randomized to TaU and 88 to TaU + MIND. Patients in the TaU + MIND group outperformed those in TaU for the primary endpoint (78.4% vs. 48.3%; p < 0.0001), and showed superior improvement in headache frequency, QoL and disability, headache impact, loss of productive time, medication intake, and in total, indirect and direct healthcare costs. CONCLUSIONS: A mindfulness-based treatment composed of six-week session and 7-10 min daily self-practice added on to TaU is superior to TaU alone for the treatment of patients with CM and MOH. TRIAL REGISTRATION: MIND-CM was registered on clinicaltrials.gov (NCT03671681) on14/09/2018.


Subject(s)
Headache Disorders, Secondary , Migraine Disorders , Mindfulness , Humans , Mindfulness/methods , Quality of Life , Treatment Outcome , Single-Blind Method , Hyperalgesia , Migraine Disorders/drug therapy , Headache , Headache Disorders, Secondary/drug therapy
2.
J Exp Clin Cancer Res ; 42(1): 66, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932446

ABSTRACT

BACKGROUND: Altered microRNA profiles have been observed not only in tumour tissues but also in biofluids, where they circulate in a stable form thus representing interesting biomarker candidates. This study aimed to identify a microRNA signature as a non-invasive biomarker and to investigate its impact on glioma biology. METHODS: MicroRNAs were selected using a global expression profile in preoperative serum samples from 37 glioma patients. Comparison between serum samples from age and gender-matched controls was performed by using the droplet digital PCR. The ROC curve and Kaplan-Meier survival analyses were used to evaluate the diagnostic/prognostic values. The functional role of the identified signature was assessed by gain/loss of function strategies in glioma cells. RESULTS: A three-microRNA signature (miR-1-3p/-26a-1-3p/-487b-3p) was differentially expressed in the serum of patients according to the isocitrate dehydrogenase (IDH) genes mutation status and correlated with both patient Overall and Progression Free Survival. The identified signature was also downregulated in the serum of patients compared to controls. Consistent with these results, the signature expression and release in the conditioned medium of glioma cells was lower in IDH-wild type cells compared to the mutated counterpart. Furthermore, in silico analysis of glioma datasets showed a consistent deregulation of the signature according to the IDH mutation status in glioma tumour tissues. Ectopic expression of the signature negatively affects several glioma functions. Notably, it impacts the glioma invasive phenotype by directly targeting the invadopodia-related proteins TKS4, TKS5 and EFHD2. CONCLUSIONS: We identified a three microRNA signature as a promising complementary or even an independent non-invasive diagnostic/prognostic biomarker. The signature displays oncosuppressive functions in glioma cells and impacts on proteins crucial for migration and invasion, providing potential targets for therapeutic intervention.


Subject(s)
Brain Neoplasms , Circulating MicroRNA , Glioma , MicroRNAs , Humans , Brain Neoplasms/pathology , Biomarkers, Tumor/genetics , Glioma/pathology , MicroRNAs/genetics , Prognosis , Isocitrate Dehydrogenase/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Calcium-Binding Proteins
3.
Neuroscience ; 416: 88-99, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31400485

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the corticospinal tract and leading to motor neuron death. According to a recent study, magnetic resonance imaging-visible changes suggestive of neurodegeneration seem absent in the motor cortex of G93A-SOD1 ALS mice. However, it has not yet been ascertained whether the cortical neural activity is intact, or alterations are present, perhaps even from an early stage. Here, cortical neurons from this model were isolated at post-natal day 1 and cultured on multielectrode arrays. Their activity was studied with a comprehensive pool of neurophysiological analyses probing excitability, criticality and network architecture, alongside immunocytochemistry and molecular investigations. Significant hyperexcitability was visible through increased network firing rate and bursting, whereas topological changes in the synchronization patterns were apparently absent. The number of dendritic spines was increased, accompanied by elevated transcriptional levels of the DLG4 gene, NMDA receptor 1 and the early pro-apoptotic APAF1 gene. The extracellular Na+, Ca2+, K+ and Cl- concentrations were elevated, pointing to perturbations in the culture micro-environment. Our findings highlight remarkable early changes in ALS cortical neuron activity and physiology. These changes suggest that the causative factors of hyperexcitability and associated toxicity could become established much earlier than the appearance of disease symptoms, with implications for the discovery of new hypothetical therapeutic targets.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Motor Cortex/pathology , Motor Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Cell Death/physiology , Disease Models, Animal , Mice, Transgenic , Neurodegenerative Diseases/pathology , Superoxide Dismutase/metabolism
4.
Biochem Pharmacol ; 147: 93-103, 2018 01.
Article in English | MEDLINE | ID: mdl-29155058

ABSTRACT

The XPO1/CRM1 inhibitor selinexor (KPT-330), is currently being evaluated in multiple clinical trials as an anticancer agent. XPO1 participates in the nuclear export of FoxO-1, which we previously found to be decreased in platinum-resistant ovarian carcinoma. The aim of this study was to determine whether enriching FoxO-1 nuclear localization using selinexor would increase ovarian cancer cell sensitivity to cisplatin. Selinexor, as a single agent, displayed a striking antiproliferative effect in different ovarian carcinoma cell lines. A schedule-dependent synergistic effect of selinexor in combination with cisplatin was found in cisplatin-sensitive IGROV-1, the combination efficacy being more evident in sensitive than in the resistant cells. In IGROV-1 cells, the combination was more effective when selinexor followed cisplatin exposure. A modulation of proteins involved in apoptosis (p53, Bax) and in cell cycle progression (p21WAF1) was found by Western blotting. Selinexor-treated cells exhibited enriched FoxO-1 nuclear staining. Knock-down experiments with RNA interference indicated that FOXO1-silenced cells displayed a reduced sensitivity to selinexor. FOXO1 silencing also tended to reduce the efficacy of the drug combination at selected cisplatin concentrations. Selinexor significantly inhibited tumor growth, induced FoxO-1 nuclear localization and improved the efficacy of cisplatin in IGROV-1 xenografts. Taken together, our results support FoxO-1 as one of the key factors promoting sensitivity towards selinexor and the synergistic interaction between cisplatin and selinexor in ovarian carcinoma cells with selected molecular backgrounds, highlighting the need for treatment regimens tailored to the molecular tumor features.


Subject(s)
Cisplatin/administration & dosage , Forkhead Box Protein O1/metabolism , Hydrazines/administration & dosage , Karyopherins/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Triazoles/administration & dosage , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Apoptosis , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Female , Forkhead Box Protein O1/genetics , Humans , Mice , Mice, Nude , Ovarian Neoplasms/genetics , Treatment Outcome , Xenograft Model Antitumor Assays/methods , Exportin 1 Protein
5.
Neurol Sci ; 38(Suppl 1): 173-175, 2017 May.
Article in English | MEDLINE | ID: mdl-28527073

ABSTRACT

Chronic migraine (CM) is a disabling condition arising from a complex mixture of interconnected biological, psychological and social factors, and is often associated with medication overuse (MO). Mindfulness is emerging as a helpful treatment for pain, and one study showed that the longitudinal 12 months' course of CM-MO patients that attended mindfulness-based treatment alone was similar to that of patients receiving medical prophylaxis alone; in this study, we describe the course of biomarkers of inflammation. Our results provide initial evidence of sustained similar effects on reduced concentration of biomarkers of inflammation, although not sizeable enough to reach statistical significance. Whether more intensive treatment and/or larger samples would lead to greater changes is unknown, but these encouraging preliminary findings suggest further research is warranted.


Subject(s)
Headache Disorders, Secondary/blood , Headache Disorders, Secondary/therapy , Migraine Disorders/blood , Migraine Disorders/therapy , Mindfulness/methods , Pre-Exposure Prophylaxis/methods , Adolescent , Adult , Aged , Analgesics/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Biomarkers/blood , Chronic Disease , Female , Follow-Up Studies , Headache Disorders, Secondary/diagnosis , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/therapy , Male , Middle Aged , Migraine Disorders/diagnosis , Substance Withdrawal Syndrome/blood , Substance Withdrawal Syndrome/therapy , Time Factors , Treatment Outcome , Tryptamines/adverse effects , Young Adult
6.
Mol Genet Metab ; 105(3): 463-71, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22221393

ABSTRACT

Pantothenate kinase-associated neurodegeneration (PKAN) is a rare, inborn error of metabolism characterized by iron accumulation in the basal ganglia and by the presence of dystonia, dysarthria, and retinal degeneration. Mutations in pantothenate kinase 2 (PANK2), the rate-limiting enzyme in mitochondrial coenzyme A biosynthesis, represent the most common genetic cause of this disorder. How mutations in this core metabolic enzyme give rise to such a broad clinical spectrum of pathology remains a mystery. To systematically explore its pathogenesis, we performed global metabolic profiling on plasma from a cohort of 14 genetically defined patients and 18 controls. Notably, lactate is elevated in PKAN patients, suggesting dysfunctional mitochondrial metabolism. As predicted, but never previously reported, pantothenate levels are higher in patients with premature stop mutations in PANK2. Global metabolic profiling and follow-up studies in patient-derived fibroblasts also reveal defects in bile acid conjugation and lipid metabolism, pathways that require coenzyme A. These findings raise a novel therapeutic hypothesis, namely, that dietary fats and bile acid supplements may hold potential as disease-modifying interventions. Our study illustrates the value of metabolic profiling as a tool for systematically exploring the biochemical basis of inherited metabolic diseases.


Subject(s)
Coenzyme A/deficiency , Mitochondria/enzymology , Neuroaxonal Dystrophies/metabolism , Pantothenate Kinase-Associated Neurodegeneration/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Adolescent , Adult , Bile Acids and Salts/metabolism , Child , Child, Preschool , Codon, Nonsense , Coenzyme A/biosynthesis , Coenzyme A/genetics , Cohort Studies , Female , Humans , Iron Metabolism Disorders , Lactic Acid/blood , Lipid Metabolism/genetics , Lipid Metabolism Disorders/genetics , Lipid Metabolism Disorders/metabolism , Male , Metabolome , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Neuroaxonal Dystrophies/diagnosis , Neuroaxonal Dystrophies/enzymology , Pantothenate Kinase-Associated Neurodegeneration/enzymology , Pantothenate Kinase-Associated Neurodegeneration/genetics , Pantothenic Acid/blood , Sphingomyelins/blood , Young Adult
7.
Tissue Eng Part C Methods ; 17(11): 1109-20, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21721991

ABSTRACT

Complex microenvironmental stimuli influence neural cell properties. To study this, we developed a three-dimensional (3-D) neural culture system, composed of different populations including neurons, astrocytes, and neural stem cells (NSCs). In particular, these last-mentioned cells represent a source potentially exploitable to test drugs, to study neurodevelopment and cell-therapies for neuroregenerations. On seeding on matrigel in a medium supplemented with serum and mitogens, cells obtained from human fetal brain tissue formed 3-D self-organizing neural architectures. Immunocytochemical analysis demonstrated the presence of undifferentiated nestin+ and CD133+ cells, surrounded by ß-tub-III+ and GFAP+ cells, suggesting the formation of niches containing potential human NSCs (hNSCs). The presence of hNSCs was confirmed by both neurosphere assay and RT-PCR, and their multipotentiality was demonstrated by both immunofluorescent staining and RT-PCR. Flow cytometry analysis revealed that neurosphere forming cells originating from at least two different subsets expressing, respectively, CD133 and CD146 markers were endowed with different proliferative and differentiation potential. Our data implicate that the complexity of environment within niches and aggregates of heterogeneous neural cell subsets may represent an innovative platform for neurobiological and neurodevelopmental investigations and a reservoir for a rapid expansion of hNSCs.


Subject(s)
Nervous System/cytology , Nervous System/growth & development , Neural Stem Cells/cytology , Neurons/cytology , AC133 Antigen , Antigens, CD/metabolism , Axons/drug effects , Axons/metabolism , Axons/ultrastructure , Brain/cytology , Brain/embryology , CD146 Antigen/metabolism , Calcium/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Separation , Cells, Cultured , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Fetus/cytology , Glutamates/pharmacology , Glycoproteins/metabolism , Humans , Immunomagnetic Separation , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurons/drug effects , Neurons/ultrastructure , Peptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL