Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Cereb Cortex ; 30(4): 2358-2371, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31812984

ABSTRACT

2p16.3 deletions, involving heterozygous NEUREXIN1 (NRXN1) deletion, dramatically increase the risk of developing neurodevelopmental disorders, including autism and schizophrenia. We have little understanding of how NRXN1 heterozygosity increases the risk of developing these disorders, particularly in terms of the impact on brain and neurotransmitter system function and brain network connectivity. Thus, here we characterize cerebral metabolism and functional brain network connectivity in Nrxn1α heterozygous mice (Nrxn1α+/- mice), and assess the impact of ketamine and dextro-amphetamine on cerebral metabolism in these animals. We show that heterozygous Nrxn1α deletion alters cerebral metabolism in neural systems implicated in autism and schizophrenia including the thalamus, mesolimbic system, and select cortical regions. Nrxn1α heterozygosity also reduces the efficiency of functional brain networks, through lost thalamic "rich club" and prefrontal cortex (PFC) hub connectivity and through reduced thalamic-PFC and thalamic "rich club" regional interconnectivity. Subanesthetic ketamine administration normalizes the thalamic hypermetabolism and partially normalizes thalamic disconnectivity present in Nrxn1α+/- mice, while cerebral metabolic responses to dextro-amphetamine are unaltered. The data provide new insight into the systems-level impact of heterozygous Nrxn1α deletion and how this increases the risk of developing neurodevelopmental disorders. The data also suggest that the thalamic dysfunction induced by heterozygous Nrxn1α deletion may be NMDA receptor-dependent.


Subject(s)
Calcium-Binding Proteins/genetics , Ketamine/administration & dosage , Neural Cell Adhesion Molecules/genetics , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/genetics , Prefrontal Cortex/diagnostic imaging , Thalamus/diagnostic imaging , Animals , Disease Models, Animal , Gene Deletion , Injections, Intraperitoneal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Net/diagnostic imaging , Nerve Net/drug effects , Neurodevelopmental Disorders/drug therapy , Prefrontal Cortex/drug effects , Thalamus/drug effects
2.
Behav Brain Res ; 224(1): 73-9, 2011 Oct 10.
Article in English | MEDLINE | ID: mdl-21645550

ABSTRACT

The reticulon-4 receptor, encoded by RTN4R, limits axonal sprouting and neural plasticity by inhibiting the outgrowth of neurites. Human association studies have implicated mutations in RTN4R in the development of schizophrenia, including the identification of several rare nonconservative missense mutations of RTN4R in schizophrenia patients. To investigate the effects of missense mutation of the reticulon-4 receptor on phenotypes relevant to schizophrenia, we behaviourally characterized a novel Rtn4r mutant mouse line with an amino acid substitution (R189H) in the Nogo-66 binding site. Behavioural assays included prepulse inhibition of acoustic startle, locomotor activity, social interaction and spatial cognition. When compared with wildtype littermates, Rtn4r mutant mice exhibited greater social preference, which may reflect a social-anxyolitic effect, and a mild impairment in spatial cognition. Given the mild effect of the R189H mutation of Rtn4r on behavioural phenotypes relevant to schizophrenia, our results do not support missense mutation of RTN4R as a strong risk factor in the pathogenesis of schizophrenia.


Subject(s)
Interpersonal Relations , Memory Disorders/genetics , Mutation, Missense/genetics , Myelin Proteins/genetics , Receptors, Cell Surface/genetics , Acoustic Stimulation/adverse effects , Animals , Arginine/genetics , Behavior, Animal , GPI-Linked Proteins/deficiency , GPI-Linked Proteins/genetics , Histidine/genetics , Inhibition, Psychological , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/genetics , Myelin Proteins/deficiency , Nogo Receptor 1 , Receptors, Cell Surface/deficiency , Reflex, Acoustic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL