Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
NMR Biomed ; 36(1): e4813, 2023 01.
Article in English | MEDLINE | ID: mdl-35995750

ABSTRACT

A three-dimensional (3D), density-weighted, concentric rings trajectory (CRT) magnetic resonance spectroscopic imaging (MRSI) sequence is implemented for cardiac phosphorus (31 P)-MRS at 7 T. The point-by-point k-space sampling of traditional phase-encoded chemical shift imaging (CSI) sequences severely restricts the minimum scan time at higher spatial resolutions. Our proposed CRT sequence implements a stack of concentric rings, with a variable number of rings and planes spaced to optimise the density of k-space weighting. This creates flexibility in acquisition time, allowing acquisitions substantially faster than traditional phase-encoded CSI sequences, while retaining high signal-to-noise ratio (SNR). We first characterise the SNR and point-spread function of the CRT sequence in phantoms. We then evaluate it at five different acquisition times and spatial resolutions in the hearts of five healthy participants at 7 T. These different sequence durations are compared with existing published 3D acquisition-weighted CSI sequences with matched acquisition times and spatial resolutions. To minimise the effect of noise on the short acquisitions, low-rank denoising of the spatiotemporal data was also performed after acquisition. The proposed sequence measures 3D localised phosphocreatine to adenosine triphosphate (PCr/ATP) ratios of the human myocardium in 2.5 min, 2.6 times faster than the minimum scan time for acquisition-weighted phase-encoded CSI. Alternatively, in the same scan time, a 1.7-times smaller nominal voxel volume can be achieved. Low-rank denoising reduced the variance of measured PCr/ATP ratios by 11% across all protocols. The faster acquisitions permitted by 7-T CRT 31 P-MRSI could make cardiac stress protocols or creatine kinase rate measurements (which involve repeated scans) more tolerable for patients without sacrificing spatial resolution.


Subject(s)
Magnetic Resonance Imaging , Phosphorus , Humans , Magnetic Resonance Spectroscopy
2.
Brain Stimul ; 15(5): 1153-1162, 2022.
Article in English | MEDLINE | ID: mdl-35988862

ABSTRACT

BACKGROUND AND OBJECTIVE: Transcranial direct current stimulation (tDCS) has wide ranging applications in neuro-behavioural and physiological research, and in neurological rehabilitation. However, it is currently limited by substantial inter-subject variability in responses, which may be explained, at least in part, by anatomical differences that lead to variability in the electric field (E-field) induced in the cortex. Here, we tested whether the variability in the E-field in the stimulated cortex during anodal tDCS, estimated using computational simulations, explains the variability in tDCS induced changes in GABA, a neurophysiological marker of stimulation effect. METHODS: Data from five previously conducted MRS studies were combined. The anode was placed over the left primary motor cortex (M1, 3 studies, N = 24) or right temporal cortex (2 studies, N = 32), with the cathode over the contralateral supraorbital ridge. Single voxel spectroscopy was performed in a 2x2x2cm voxel under the anode in all cases. MRS data were acquired before and either during or after 1 mA tDCS using either a sLASER sequence (7T) or a MEGA-PRESS sequence (3T). sLASER MRS data were analysed using LCModel, and MEGA-PRESS using FID-A and Gannet. E-fields were simulated in a finite element model of the head, based on individual structural MR images, using SimNIBS. Separate linear mixed effects models were run for each E-field variable (mean and 95th percentile; magnitude, and components normal and tangential to grey matter surface, within the MRS voxel). The model included effects of time (pre or post tDCS), E-field, grey matter volume in the MRS voxel, and a 3-way interaction between time, E-field and grey matter volume. Additionally, we ran a permutation analysis using PALM to determine whether E-field anywhere in the brain, not just in the MRS voxel, correlated with GABA change. RESULTS: In M1, higher mean E-field magnitude was associated with greater anodal tDCS-induced decreases in GABA (t(24) = 3.24, p = 0.003). Further, the association between mean E-field magnitude and GABA change was moderated by the grey matter volume in the MRS voxel (t(24) = -3.55, p = 0.002). These relationships were consistent across all E-field variables except the mean of the normal component. No significant relationship was found between tDCS-induced GABA decrease and E-field in the temporal voxel. No significant clusters were found in the whole brain analysis. CONCLUSIONS: Our data suggest that the electric field induced by tDCS within the brain is variable, and is significantly related to anodal tDCS-induced decrease in GABA, a key neurophysiological marker of stimulation. These findings strongly support individualised dosing of tDCS, at least in M1. Further studies examining E-fields in relation to other outcome measures, including behaviour, will help determine the optimal E-fields required for any desired effects.


Subject(s)
Motor Cortex , Transcranial Direct Current Stimulation , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Transcranial Direct Current Stimulation/methods , gamma-Aminobutyric Acid
3.
Elife ; 102021 10 08.
Article in English | MEDLINE | ID: mdl-34622779

ABSTRACT

The brain has a remarkable capacity to acquire and store memories that can later be selectively recalled. These processes are supported by the hippocampus which is thought to index memory recall by reinstating information stored across distributed neocortical circuits. However, the mechanism that supports this interaction remains unclear. Here, in humans, we show that recall of a visual cue from a paired associate is accompanied by a transient increase in the ratio between glutamate and GABA in visual cortex. Moreover, these excitatory-inhibitory fluctuations are predicted by activity in the hippocampus. These data suggest the hippocampus gates memory recall by indexing information stored across neocortical circuits using a disinhibitory mechanism.


Memories are stored by distributed groups of neurons in the brain, with individual neurons contributing to multiple memories. In a part of the brain called the neocortex, memories are held in a silent state through a balance between excitatory and inhibitory activity. This is to prevent them from being disrupted by incoming information. When a memory is recalled, an area of the brain called the hippocampus is thought to instruct the neocortex to activate the appropriate neuronal network. But how the hippocampus and neocortex coordinate their activity to switch memories 'on' and 'off' is unclear. The answer may lie in the fact that neurons in the neocortex consist of two broad types: excitatory and inhibitory. Excitatory neurons increase the activity of other neurons. They do this by releasing a chemical called glutamate. Inhibitory neurons reduce the activity of other neurons, by releasing a chemical called GABA. Koolschijn, Shpektor et al. hypothesized that the hippocampus activates memories by changing the balance of excitatory and inhibitory activity in neocortex. To test this idea, Koolschijn, Shpektor et al. invited healthy volunteers to explore a virtual reality environment. The volunteers learned that specific sounds in the environment predicted the appearance of particular visual patterns. The next day, the volunteers returned to the environment and viewed these patterns again. After each pattern, they were invited to open a virtual box. Volunteers learned that some patterns led to money in the virtual box, while other patterns did not. Finally, on day three, the volunteers listened to the sounds from day one again, this time while lying in a brain scanner. The volunteers' task was to infer whether each of the sounds would lead to money. Given that the sounds were never directly paired with the content of the virtual box, the volunteers had to solve the task by recalling the associated visual patterns. As they did so, the brain scanner measured their overall brain activity. It also assessed the relative levels of excitatory and inhibitory activity in visual areas of the neocortex, by measuring glutamate and GABA. The results revealed that as the volunteers recalled the visual cues, activity in both the hippocampus and the visual neocortex increased. Moreover, the ratio of glutamate to GABA in visual neocortex also increased which was predicted by activity in the hippocampus. This suggests that the hippocampus reactivates memories stored in neocortex by temporarily increasing excitatory activity to release memories from inhibitory control. Disturbances in the balance of excitation and inhibition occur in various neuropsychiatric disorders, including schizophrenia, autism, epilepsy and Tourette's syndrome. Damage to the hippocampus is known to cause amnesia. The current findings suggest that memories may become inaccessible ­ or may be activated inappropriately ­ when the interaction between the hippocampus and neocortex goes awry. Future studies could test this possibility in clinical populations.


Subject(s)
Hippocampus/physiology , Mental Recall , Neocortex/physiology , Neural Inhibition , Neuronal Plasticity , Acoustic Stimulation , Association , Auditory Pathways/physiology , Auditory Perception , Brain Mapping , Cues , Female , Glutamic Acid/metabolism , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Neocortex/diagnostic imaging , Neocortex/metabolism , Photic Stimulation , Time Factors , Visual Pathways/physiology , Visual Perception , Young Adult , gamma-Aminobutyric Acid/metabolism
4.
NMR Biomed ; 32(6): e4095, 2019 06.
Article in English | MEDLINE | ID: mdl-30924566

ABSTRACT

PURPOSE: We test the reproducibility of human cardiac phosphorus MRS (31 P-MRS) at ultra-high field strength (7 T) for the first time. The primary motivation of this work was to assess the reproducibility of a 'rapid' 6½ min 31 P three-dimensional chemical shift imaging (3D-CSI) sequence, which if sufficiently reproducible would allow the study of stress-response processes. We compare this with an established 28 min protocol, designed to record high-quality spectra in a clinically feasible scan time. Finally, we use this opportunity to compare the effect of per-subject B0 shimming on data quality and reproducibility in the 6½ min protocol. METHODS: 10 healthy subjects were scanned on two occasions: one to test the 28 min 3D-CSI protocol, and one to test the 6½ min protocol. Spectra were fitted using the OXSA MATLAB toolbox. The phosphocreatine to adenosine triphosphate concentration ratio (PCr/ATP) from each scan was analysed for intra- and intersubject variability. The impact of different strategies for voxel selection was assessed. RESULTS: There were no significant differences between repeated measurements in the same subject. For the 28 min protocol, PCr/ATP in the midseptal voxel across all scans was 1.91 ± 0.36 (mean ± intersubject SD). For the 6½ min protocol, PCr/ATP in the midseptal voxel was 1.76 ± 0.40. The coefficients of reproducibility (CRs) were 0.49 (28 min) and 0.67 (6½ min). Per-subject B0 shimming improved the fitted PCr/ATP precision (for 6½ min scans), but had negligible effect on the CR (0.67 versus 0.66). CONCLUSIONS: Both 7 T protocols show improved reproducibility compared with a previous 3 T study by Tyler et al. Our results will enable informed power calculations and protocol selection for future clinical research studies.


Subject(s)
Magnetic Resonance Spectroscopy , Myocardium/metabolism , Phosphorus/metabolism , Adenosine Triphosphate/metabolism , Adult , Female , Humans , Male , Phosphocreatine/metabolism , Reproducibility of Results , Sample Size , Time Factors
5.
Magn Reson Med ; 78(6): 2095-2105, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28244131

ABSTRACT

PURPOSE: Phosphorus (31 P) metabolites are emerging liver disease biomarkers. Of particular interest are phosphomonoester and phosphodiester (PDE) "peaks" that comprise multiple overlapping resonances in 31 P spectra. This study investigates the effect of improved spectral resolution at 7 Tesla (T) on quantifying hepatic metabolites in cirrhosis. METHODS: Five volunteers were scanned to determine metabolite T1 s. Ten volunteers and 11 patients with liver cirrhosis were scanned at 7T. Liver spectra were acquired in 28 min using a 16-channel 31 P array and 3D chemical shift imaging. Concentrations were calculated using γ-adenosine-triphosphate (γ-ATP) = 2.65 mmol/L wet tissue. RESULTS: T1 means ± standard deviations: phosphatidylcholine 1.05 ± 0.28 s, nicotinamide-adenine-dinucleotide (NAD+ ) 2.0 ± 1.0 s, uridine-diphosphoglucose (UDPG) 3.3 ± 1.4 s. Concentrations in healthy volunteers: α-ATP 2.74 ± 0.11 mmol/L wet tissue, inorganic phosphate 2.23 ± 0.20 mmol/L wet tissue, glycerophosphocholine 2.34 ± 0.46 mmol/L wet tissue, glycerophosphoethanolamine 1.50 ± 0.28 mmol/L wet tissue, phosphocholine 1.06 ± 0.16 mmol/L wet tissue, phosphoethanolamine 0.77 ± 0.14 mmol/L wet tissue, NAD+ 2.37 ± 0.14 mmol/L wet tissue, UDPG 2.00 ± 0.22 mmol/L wet tissue, phosphatidylcholine 1.38 ±â€Š0.31 mmol/L wet tissue. Inorganic phosphate and phosphatidylcholine concentrations were significantly lower in patients; glycerophosphoethanolamine concentrations were significantly higher (P < 0.05). CONCLUSION: We report human in vivo hepatic T1 s for phosphatidylcholine, NAD+ , and UDPG for the first time at 7T. Our protocol allows high signal-to-noise, repeatable measurement of metabolite concentrations in human liver. The splitting of PDE into its constituent peaks at 7T may allow more insight into changes in metabolism. Magn Reson Med 78:2095-2105, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Subject(s)
Liver Diseases/diagnostic imaging , Liver/diagnostic imaging , Magnetic Resonance Spectroscopy , Phosphorus/chemistry , Adult , Esters/chemistry , Female , Healthy Volunteers , Humans , Liver Cirrhosis/diagnostic imaging , Magnetic Resonance Imaging , Male , Phosphatidylcholines/chemistry , Quality Control , Reproducibility of Results , Uridine Diphosphate Glucose/chemistry , Young Adult
6.
Radiology ; 281(2): 409-417, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27326664

ABSTRACT

Purpose To test whether the increased signal-to-noise ratio of phosphorus 31 (31P) magnetic resonance (MR) spectroscopy at 7 T improves precision in cardiac metabolite quantification in patients with dilated cardiomyopathy (DCM) compared with that at 3 T. Materials and Methods Ethical approval was obtained, and participants provided written informe consent. In a prospective study, 31P MR spectroscopy was performed at 3 T and 7 T in 25 patients with DCM. Ten healthy matched control subjects underwent 31P MR spectroscopy at 7 T. Paired Student t tests were performed to compare results between the 3-T and 7-T studies. Results The phosphocreatine (PCr) signal-to-noise ratio increased 2.5 times at 7 T compared with that at 3 T. The PCr to adenosine triphosphate (ATP) concentration ratio (PCr/ATP) was similar at both field strengths (mean ± standard deviation, 1.48 ± 0.44 at 3 T vs 1.54 ± 0.39 at 7 T, P = .49), as expected. The Cramér-Rao lower bounds in PCr concentration (a measure of uncertainty in the measured ratio) were 45% lower at 7 T than at 3 T, reflecting the higher quality of 7-T 31P spectra. Patients with dilated cardioyopathy had a significantly lower PCr/ATP than did healthy control subjects at 7 T (1.54 ± 0.39 vs 1.95 ± 0.25, P = .005), which is consistent with previous findings. Conclusion 7-T cardiac 31P MR spectroscopy is feasible in patients with DCM and gives higher signal-to-noise ratios and more precise quantification of the PCr/ATP than that at 3 T. PCr/ATP was significantly lower in patients with DCM than in control subjects at 7 T, which is consistent with previous findings at lower field strengths.


Subject(s)
Cardiomyopathy, Dilated/diagnostic imaging , Magnetic Resonance Spectroscopy/methods , Biomarkers/metabolism , Case-Control Studies , Female , Humans , Male , Middle Aged , Phosphocreatine/metabolism , Phosphorus , Prospective Studies , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL