Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Neurosci ; 43(46): 7812-7821, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37758474

ABSTRACT

In human and nonhuman primates, deep brain stimulation applied at or near the internal medullary lamina of the thalamus [a region referred to as "central thalamus," (CT)], but not at nearby thalamic sites, elicits major changes in the level of consciousness, even in some minimally conscious brain-damaged patients. The mechanisms behind these effects remain mysterious, as the connections of CT had not been specifically mapped in primates. In marmoset monkeys (Callithrix jacchus) of both sexes, we labeled the axons originating from each of the various CT neuronal populations and analyzed their arborization patterns in the cerebral cortex and striatum. We report that, together, these CT populations innervate an array of high-level frontal, posterior parietal, and cingulate cortical areas. Some populations simultaneously target the frontal, parietal, and cingulate cortices, while others predominantly target the dorsal striatum. Our data indicate that CT stimulation can simultaneously engage a heterogeneous set of projection systems that, together, target the key nodes of the attention, executive control, and working-memory networks of the brain. Increased functional connectivity in these networks has been previously described as a signature of consciousness.SIGNIFICANCE STATEMENT In human and nonhuman primates, deep brain stimulation at a specific site near the internal medullary lamina of the thalamus ["central thalamus," (CT)] had been shown to restore arousal and awareness in anesthetized animals, as well as in some brain-damaged patients. The mechanisms behind these effects remain mysterious, as CT connections remain poorly defined in primates. In marmoset monkeys, we mapped with sensitive axon-labeling methods the pathways originated from CT. Our data indicate that stimulation applied in CT can simultaneously engage a heterogeneous set of projection systems that, together, target several key nodes of the attention, executive control, and working-memory networks of the brain. Increased functional connectivity in these networks has been previously described as a signature of consciousness.


Subject(s)
Brain Injuries , Callithrix , Male , Animals , Female , Humans , Thalamus/physiology , Cerebral Cortex/physiology , Arousal/physiology , Consciousness/physiology , Neural Pathways/physiology
2.
J Neurosci ; 43(46): 7780-7798, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37709539

ABSTRACT

Animal studies have established that the mediodorsal nucleus (MD) of the thalamus is heavily and reciprocally connected with all areas of the prefrontal cortex (PFC). In humans, however, these connections are difficult to investigate. High-resolution imaging protocols capable of reliably tracing the axonal tracts linking the human MD with each of the PFC areas may thus be key to advance our understanding of the variation, development, and plastic changes of these important circuits, in health and disease. Here, we tested in adult female and male humans the reliability of a new reconstruction protocol based on in vivo diffusion MRI to trace, measure, and characterize the fiber tracts interconnecting the MD with 39 human PFC areas per hemisphere. Our protocol comprised the following three components: (1) defining regions of interest; (2) preprocessing diffusion data; and, (3) modeling white matter tracts and tractometry. This analysis revealed largely separate PFC territories of reciprocal MD-PFC tracts bearing striking resemblance with the topographic layout observed in macaque connection-tracing studies. We then examined whether our protocol could reliably reconstruct each of these MD-PFC tracts and their profiles across test and retest sessions. Results revealed that this protocol was able to trace and measure, in both left and right hemispheres, the trajectories of these 39 area-specific axon bundles with good-to-excellent test-retest reproducibility. This protocol, which has been made publicly available, may be relevant for cognitive neuroscience and clinical studies of normal and abnormal PFC function, development, and plasticity.SIGNIFICANCE STATEMENT Reciprocal MD-PFC interactions are critical for complex human cognition and learning. Reliably tracing, measuring and characterizing MD-PFC white matter tracts using high-resolution noninvasive methods is key to assess individual variation of these systems in humans. Here, we propose a high-resolution tractography protocol that reliably reconstructs 39 area-specific MD-PFC white matter tracts per hemisphere and quantifies structural information from diffusion MRI data. This protocol revealed a detailed mapping of thalamocortical and corticothalamic MD-PFC tracts in four different PFC territories (dorsal, medial, orbital/frontal pole, inferior frontal) showing structural connections resembling those observed in tracing studies with macaques. Furthermore, our automated protocol revealed high test-retest reproducibility and is made publicly available, constituting a step forward in mapping human MD-PFC circuits in clinical and academic research.


Subject(s)
Mediodorsal Thalamic Nucleus , Prefrontal Cortex , Adult , Animals , Humans , Male , Female , Reproducibility of Results , Prefrontal Cortex/diagnostic imaging , Thalamus , Cognition , Macaca , Neural Pathways/diagnostic imaging
3.
Cell Rep ; 42(3): 112200, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36867532

ABSTRACT

Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6 million synapses. The model recreates the biological connectivity of these neurons, and simulations of the model reproduce multiple experimental findings in different brain states. The model shows that inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations. In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The model is made openly available to provide a new tool for studying the function and dysfunction of the thalamoreticular circuitry in various brain states.


Subject(s)
Thalamus , Wakefulness , Mice , Animals , Thalamus/physiology , Sleep/physiology , Thalamic Nuclei/physiology , Perception , Cerebral Cortex/physiology
4.
J Neurosci ; 42(41): 7757-7781, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36096667

ABSTRACT

All pathways targeting the thalamus terminate directly onto the thalamic projection cells. As these cells lack local excitatory interconnections, their computations are fundamentally defined by the type and local convergence patterns of the extrinsic inputs. These two key variables, however, remain poorly defined for the "higher-order relay" (HO) nuclei that constitute most of the thalamus in large-brained mammals, including humans. Here, we systematically analyzed the input landscape of a representative HO nucleus of the mouse thalamus, the posterior nucleus (Po). We examined in adult male and female mice the neuropil distribution of terminals immunopositive for markers of excitatory or inhibitory neurotransmission, mapped input sources across the brain and spinal cord and compared the intranuclear distribution and varicosity size of axons originated from each input source. Our findings reveal a complex landscape of partly overlapping input-specific microdomains. Cortical layer (L)5 afferents from somatosensory and motor areas predominate in central and ventral Po but are relatively less abundant in dorsal and lateral portions of the nucleus. Excitatory inputs from the trigeminal complex, dorsal column nuclei (DCN), spinal cord and superior colliculus as well as inhibitory terminals from anterior pretectal nucleus and zona incerta (ZI) are each abundant in specific Po regions and absent from others. Cortical L6 and reticular thalamic nucleus terminals are evenly distributed across Po. Integration of specific input motifs by particular cell subpopulations may be commonplace within HO nuclei and favor the emergence of multiple, functionally diverse input-output subnetworks.SIGNIFICANCE STATEMENT Because thalamic projection neurons lack local interconnections, their output is essentially determined by the kind and convergence of the long-range inputs that they receive. Fragmentary evidence suggests that these parameters may vary within the "higher-order relay" (HO) nuclei that constitute much of the thalamus, but such variation has not been systematically analyzed. Here, we mapped the origin and local convergence of all the extrinsic inputs reaching the posterior nucleus (Po), a typical HO nucleus of the mouse thalamus by combining multiple neuropil labeling and axon tracing methods. We report a complex mosaic of partly overlapping input-specific domains within Po. Integration of different input motifs by specific cell subpopulations in HO nuclei may favor the emergence of multiple, computationally specialized thalamocortical subnetworks.


Subject(s)
Posterior Thalamic Nuclei , Thalamus , Humans , Male , Female , Mice , Animals , Neural Pathways/physiology , Thalamus/physiology , Thalamic Nuclei/physiology , Superior Colliculi , Mammals
5.
Neuroimage ; 262: 119558, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35973564

ABSTRACT

The "primary" or "first-order relay" nuclei of the thalamus feed the cerebral cortex with information about ongoing activity in the environment or the subcortical motor systems. Because of the small size of these nuclei and the high specificity of their input and output pathways, new imaging protocols are required to investigate thalamocortical interactions in human perception, cognition and language. The goal of the present study was twofold: I) to develop a reconstruction protocol based on in vivo diffusion MRI to extract and measure the axonal fiber tracts that originate or terminate specifically in individual first-order relay nuclei; and, II) to test the reliability of this reconstruction protocol. In left and right hemispheres, we investigated the thalamocortical/corticothalamic axon bundles linking each of the first-order relay nuclei and their main cortical target areas, namely, the lateral geniculate nucleus (optic radiation), the medial geniculate nucleus (acoustic radiation), the ventral posterior nucleus (somatosensory radiation) and the ventral lateral nucleus (motor radiation). In addition, we examined the main subcortical input pathway to the ventral lateral posterior nucleus, which originates in the dentate nucleus of the cerebellum. Our protocol comprised three components: defining regions-of-interest; preprocessing diffusion data; and modeling white-matter tracts and tractometry. We then used computation and test-retest methods to check whether our protocol could reliably reconstruct these tracts of interest and their profiles. Our results demonstrated that the protocol had nearly perfect computational reproducibility and good-to-excellent test-retest reproducibility. This new protocol may be of interest for both basic human brain neuroscience and clinical studies and has been made publicly available to the scientific community.


Subject(s)
Thalamus , White Matter , Geniculate Bodies , Humans , Neural Pathways , Reproducibility of Results , Thalamic Nuclei , Thalamus/diagnostic imaging , Ventral Thalamic Nuclei , White Matter/diagnostic imaging
6.
Elife ; 92020 10 26.
Article in English | MEDLINE | ID: mdl-33103997

ABSTRACT

The thalamus engages in sensation, action, and cognition, but the structure underlying these functions is poorly understood. Thalamic innervation of associative cortex targets several interneuron types, modulating dynamics and influencing plasticity. Is this structure-function relationship distinct from that of sensory thalamocortical systems? Here, we systematically compared function and structure across a sensory and an associative thalamocortical loop in the mouse. Enhancing excitability of mediodorsal thalamus, an associative structure, resulted in prefrontal activity dominated by inhibition. Equivalent enhancement of medial geniculate excitability robustly drove auditory cortical excitation. Structurally, geniculate axons innervated excitatory cortical targets in a preferential manner and with larger synaptic terminals, providing a putative explanation for functional divergence. The two thalamic circuits also had distinct input patterns, with mediodorsal thalamus receiving innervation from a diverse set of cortical areas. Altogether, our findings contribute to the emerging view of functional diversity across thalamic microcircuits and its structural basis.


Subject(s)
Cerebral Cortex/physiology , Neural Pathways/physiology , Sensory Receptor Cells/physiology , Thalamus/physiology , Animals , Brain Mapping , Cerebral Cortex/anatomy & histology , Mice , Mice, Inbred C57BL , Neural Pathways/anatomy & histology , Presynaptic Terminals/physiology , Thalamus/anatomy & histology
7.
J Neurosci ; 40(13): 2663-2679, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32054677

ABSTRACT

Thalamocortical posterior nucleus (Po) axons innervating the vibrissal somatosensory (S1) and motor (MC) cortices are key links in the brain neuronal network that allows rodents to explore the environment whisking with their motile snout vibrissae. Here, using fine-scale high-end 3D electron microscopy, we demonstrate in adult male C57BL/6 wild-type mice marked differences between MC versus S1 Po synapses in (1) bouton and active zone size, (2) neurotransmitter vesicle pool size, (3) distribution of mitochondria around synapses, and (4) proportion of synapses established on dendritic spines and dendritic shafts. These differences are as large, or even more pronounced, than those between Po and ventro-posterior thalamic nucleus synapses in S1. Moreover, using single-axon transfection labeling, we demonstrate that the above differences actually occur on the MC versus the S1 branches of individual Po cell axons that innervate both areas. Along with recently-discovered divergences in efficacy and plasticity, the synaptic structure differences reported here thus reveal a new subcellular level of complexity. This is a finding that upends current models of thalamocortical circuitry, and that might as well illuminate the functional logic of other branched projection axon systems.SIGNIFICANCE STATEMENT Many long-distance brain connections depend on neurons whose branched axons target separate regions. Using 3D electron microscopy and single-cell transfection, we investigated the mouse Posterior thalamic nucleus (Po) cell axons that simultaneously innervate motor and sensory areas of the cerebral cortex involved in whisker movement control. We demonstrate significant differences in the size of the boutons made in each area by individual Po axons, as well as in functionally-relevant parameters in the composition of their synapses. In addition, we found similarly large differences between the synapses of Po versus ventral posteromedial thalamic nucleus axons in the whisker sensory cortex. Area-specific synapse structure in individual axons implies a new, unsuspected level of complexity in long-distance brain connections.


Subject(s)
Axons/physiology , Nerve Net/physiology , Neurons/physiology , Somatosensory Cortex/physiology , Synapses/physiology , Thalamus/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiology , Vibrissae/physiology
8.
Cereb Cortex ; 29(12): 5098-5115, 2019 12 17.
Article in English | MEDLINE | ID: mdl-30888415

ABSTRACT

The posterior parietal cortex (PPC) is a central hub for the primate forebrain networks that control skilled manual behavior, including tool use. Here, we quantified and compared the sources of thalamic input to electrophysiologically-identified hand/forearm-related regions of several PPC areas, namely areas 5v, AIP, PFG, and PF, of the capuchin monkey (Sapajus sp). We found that these areas receive most of their thalamic connections from the Anterior Pulvinar (PuA), Lateral Posterior (LP) and Medial Pulvinar (PuM) nuclei. Each PPC area receives a specific combination of projections from these nuclei, and fewer additional projections from other nuclei. Moreover, retrograde labeling of the cells innervating different PPC areas revealed substantial intermingling of these cells within the thalamus. Differences in thalamic input may contribute to the different functional properties displayed by the PPC areas. Furthermore, the observed innervation of functionally-related PPC domains from partly intermingled thalamic cell populations accords with the notion that higher-order thalamic inputs may dynamically regulate functional connectivity between cortical areas.


Subject(s)
Motor Activity/physiology , Neural Pathways/physiology , Parietal Lobe/physiology , Thalamus/physiology , Tool Use Behavior/physiology , Animals , Brain Mapping , Cebus , Female , Forelimb/innervation , Forelimb/physiology , Male , Neural Pathways/cytology , Parietal Lobe/cytology , Thalamus/cytology
9.
Nat Neurosci ; 21(11): 1551-1562, 2018 11.
Article in English | MEDLINE | ID: mdl-30349105

ABSTRACT

Sleep cycles consist of rapid alterations between arousal states, including transient perturbation of sleep rhythms, microarousals, and full-blown awake states. Here we demonstrate that the calretinin (CR)-containing neurons in the dorsal medial thalamus (DMT) constitute a key diencephalic node that mediates distinct levels of forebrain arousal. Cell-type-specific activation of DMT/CR+ cells elicited active locomotion lasting for minutes, stereotyped microarousals, or transient disruption of sleep rhythms, depending on the parameters of the stimulation. State transitions could be induced in both slow-wave and rapid eye-movement sleep. The DMT/CR+ cells displayed elevated activity before arousal, received selective subcortical inputs, and innervated several forebrain sites via highly branched axons. Together, these features enable DMT/CR+ cells to summate subcortical arousal information and effectively transfer it as a rapid, synchronous signal to several forebrain regions to modulate the level of arousal.


Subject(s)
Arousal/physiology , Locomotion/physiology , Neurons/physiology , Prosencephalon/physiology , Thalamus/physiology , Animals , Electroencephalography , Electromyography , Mice
10.
Cereb Cortex ; 27(9): 4586-4606, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28922855

ABSTRACT

Development of the cerebral cortex depends critically on the regulation of progenitor cell proliferation and fate. Cortical progenitor cells are remarkably diverse with regard to their morphology as well as laminar and areal position. Extrinsic factors, such as thalamic axons, have been proposed to play key roles in progenitor cell regulation, but the diversity, extent and timing of interactions between extrinsic elements and each class of cortical progenitor cell in higher mammals remain undefined. Here we use the ferret to demonstrate the existence of a complex set of extrinsic elements that may interact, alone or in combination, with subpopulations of progenitor cells, defining a code of extrinsic influences. This code and its complexity vary significantly between developmental stages, layer of residence and morphology of progenitor cells. By analyzing the spatial-temporal overlap of progenitor cell subtypes with neuronal and axonal populations, we show that multiple sets of migrating neurons and axon tracts overlap extensively with subdivisions of the Subventricular Zones, in an exquisite lamina-specific pattern. Our findings provide a framework for understanding the feedback influence of both intra- and extra-cortical elements onto progenitor cells to modulate their dynamics and fate decisions in gyrencephalic brains.


Subject(s)
Cell Movement/physiology , Cerebral Cortex/growth & development , Neurons/physiology , Thalamus/cytology , Animals , Animals, Newborn , Ferrets , Neural Stem Cells , Neurogenesis/physiology
11.
Eur J Neurosci ; 35(10): 1524-32, 2012 May.
Article in English | MEDLINE | ID: mdl-22606998

ABSTRACT

Our current understanding of thalamocortical (TC) circuits is largely based on studies investigating so-called 'specific' thalamic nuclei, which receive and transmit sensory-triggered input to specific cortical target areas. TC neurons in these nuclei have a striking point-to-point topography and a stereotyped laminar pattern of termination in the cortex, which has made them ideal models to study the organization, plasticity, and development of TC circuits. However, despite their experimental importance, neurons within these nuclei only represent a fraction of all thalamic neurons and do not reflect the diversity of the TC neuron population. Here we review the distinct subtypes of projection neurons that populate the thalamus, both within and across anatomically-defined nuclei, with regard to differences in their morphology, input/output connectivity and target specificity, as well as more recent findings on their neuron type-specific gene expression and development. We argue that a detailed understanding of the biology of TC neurons is critical to understand the role of the thalamus in normal and pathological perception, voluntary movement, cognition and attention.


Subject(s)
Cerebral Cortex/cytology , Neural Pathways/physiology , Neurons/classification , Neurons/physiology , Thalamus/cytology , Animals , Cerebral Cortex/physiology , Humans , Neural Pathways/cytology , Thalamus/physiology
12.
Cereb Cortex ; 19(10): 2380-95, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19188274

ABSTRACT

Input to apical dendritic tufts is now deemed crucial for associative learning, attention, and similar "feedback" interactions in the cerebral cortex. Excitatory input to apical tufts in neocortical layer 1 has been traditionally assumed to be predominantly cortical, as thalamic pathways directed to this layer were regarded relatively scant and diffuse. However, the sensitive tracing methods used in the present study show that, throughout the rat neocortex, large numbers (mean approximately 4500/mm(2)) of thalamocortical neurons converge in layer 1 and that this convergence gives rise to a very high local density of thalamic terminals. Moreover, we show that the layer 1-projecting neurons are present in large numbers in most, but not all, motor, association, limbic, and sensory nuclei of the rodent thalamus. Some layer 1-projecting axons branch to innervate large swaths of the cerebral hemisphere, whereas others arborize within only a single cortical area. Present data imply that realistic modeling of cortical circuitry should factor in a dense axonal canopy carrying highly convergent thalamocortical input to pyramidal cell apical tufts. In addition, they are consistent with the notion that layer 1-projecting axons may be a robust anatomical substrate for extensive "feedback" interactions between cortical areas via the thalamus.


Subject(s)
Dendrites/physiology , Neocortex/anatomy & histology , Thalamus/anatomy & histology , Afferent Pathways/anatomy & histology , Animals , Axons/physiology , Female , Fluorescent Dyes , Image Processing, Computer-Assisted , Immunohistochemistry , Rats , Rats, Sprague-Dawley
13.
An R Acad Nac Med (Madr) ; 126(3): 357-72; discussion 372-3, 2009.
Article in Spanish | MEDLINE | ID: mdl-20432677

ABSTRACT

Thalamocortical (TC) pathways are still mainly understood as the gateway for ascending sensory-motor information into the cortex. However, it is now clear that a great many TC cells are involved in interactions between cortical areas via the thalamus. We review recent data, including our own, which demonstrate the generalized presence in rodent thalamus of two major TC cell types characterized, among other features, by their axon development, arborization and laminar targeting in the cortex. Such duality may allow inputs from thalamus to access cortical circuits via "bottom-up"-wired axon arbors or via "top-down"-wired axon arbors.


Subject(s)
Cerebral Cortex/physiology , Thalamus/physiology , Animals , Cerebral Cortex/anatomy & histology , Neural Pathways , Neurons/physiology , Rats , Rats, Sprague-Dawley , Thalamus/anatomy & histology
14.
Cereb Cortex ; 18(2): 344-63, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17517678

ABSTRACT

Inputs to the layer I apical dendritic tufts of pyramidal cells are crucial in "top-down" interactions in the cerebral cortex. A large population of thalamocortical cells, the "matrix" (M-type) cells, provides a direct robust input to layer I that is anatomically and functionally different from the thalamocortical input to layer VI. The developmental timecourse of M-type axons is examined here in rats aged E (embryonic day) 16 to P (postnatal day) 30. Anterograde techniques were used to label axons arising from 2 thalamic nuclei mainly made up of M-type cells, the Posterior and the Ventromedial. The primary growth cones of M-type axons rapidly reached the subplate of dorsally situated cortical areas. After this, interstitial branches would sprout from these axons under more lateral cortical regions to invade the overlying cortical plate forming secondary arbors. Moreover, retrograde labeling of M-type cell somata in the thalamus after tracer deposits confined to layer I revealed that large numbers of axons from multiple thalamic nuclei had already converged in a given spot of layer I by P3. Because of early ingrowth in such large numbers, interactions of M-type axons may significantly influence the early development of cortical circuits.


Subject(s)
Motor Cortex/cytology , Motor Cortex/growth & development , Neurons/cytology , Neurons/physiology , Thalamus/cytology , Thalamus/growth & development , Animals , Animals, Newborn , Motor Cortex/embryology , Nerve Net/cytology , Nerve Net/embryology , Nerve Net/growth & development , Neural Pathways/cytology , Neural Pathways/embryology , Neural Pathways/growth & development , Rats , Rats, Wistar , Thalamus/embryology
SELECTION OF CITATIONS
SEARCH DETAIL