Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Nutrients ; 15(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38140292

ABSTRACT

Obesity is a risk factor for several diseases present worldwide. Currently, dietary changes and physical activity are considered the most effective treatment to reduce obesity and its associated comorbidities. To promote weight loss, hypocaloric diets can be supported by nutraceuticals. The aim of this study was to evaluate the effects of a hypocaloric diet associated with Cinchona succirubra supplementation on satiety, body weight and body composition in obese subjects. Fifty-nine overweight/obese adults, were recruited, randomized into two groups and treated for 2 months. The first group (32 adults) was treated with a hypocaloric diet plus cinchona supplementation (the T-group); the second one (27 adults) was treated with a hypocaloric diet plus a placebo supplementation (the P-group). Anthropometric-measurements as well as bioimpedance analysis, a Zung test and biochemical parameters were evaluated at baseline and after 60 days. T-group adults showed significant improvement in nutritional status and body composition compared to those at the baseline and in the P-group. Moreover, T-group adults did not show a reduction in Cholecystokinin serum levels compared to those of P-group adults. In conclusion, our data demonstrate that a hypocaloric diet associated with cinchona supplementation is effective in inducing more significant weight loss and the re-establishment of metabolic parameters than those obtained with a hypocaloric diet.


Subject(s)
Cinchona , Obesity , Adult , Humans , Obesity/metabolism , Overweight , Diet, Reducing , Weight Loss , Body Composition , Dietary Supplements
2.
Nutrients ; 15(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36839248

ABSTRACT

Caloric restriction (CR) and dietary nitrate supplementation are nutritional interventions with pleiotropic physiological functions. This pilot study investigates the combined effects of CR and nitrate-rich beetroot juice (BRJ) on metabolic, vascular, and cognitive functions in overweight and obese middle-aged and older adults. This was a two-arm, parallel randomized clinical trial including 29 participants allocated to CR + BRJ (n = 15) or CR alone (n = 14) for 14 days. Body composition, resting energy expenditure (REE), and hand-grip strength were measured. Resting blood pressure (BP) and microvascular endothelial function were measured, and Trail-Making Test A and B were used to assess cognitive function. Salivary nitrate and nitrite, and urinary nitrate and 8-isoprostane concentrations were measured. Changes in body composition, REE, and systolic and diastolic BP were similar between the two interventions (p > 0.05). The CR + BRJ intervention produced greater changes in average microvascular flux (p = 0.03), NO-dependent endothelial activity (p = 0.02), and TMT-B cognitive scores (p = 0.012) compared to CR alone. Changes in urinary 8-isoprostane were greater in the CR + BRJ group (p = 0.02), and they were inversely associated with changes in average microvascular flux (r = -0.53, p = 0.003). These preliminary findings suggest that greater effects on vascular and cognitive functions could be achieved by combining CR with dietary nitrate supplementation.


Subject(s)
Beta vulgaris , Nitrates , Middle Aged , Humans , Aged , Nitrates/pharmacology , Pilot Projects , Overweight , Caloric Restriction , Dietary Supplements , Blood Pressure , Antioxidants/pharmacology , Cognition , Double-Blind Method , Fruit and Vegetable Juices
3.
Int J Mol Sci ; 21(10)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414136

ABSTRACT

Energy homeostasis regulation is essential for the maintenance of life. Neuronal hypothalamic populations are involved in the regulation of energy balance. In order play this role, they require energy: mitochondria, indeed, have a key role in ensuring a constant energy supply to neurons. Mitochondria are cellular organelles that are involved in dynamic processes; their dysfunction has been associated with many diseases, such as obesity and type 2 diabetes, indicating their importance in cellular metabolism and bioenergetics. Food intake excess can induce mitochondrial dysfunction with consequent production of reactive oxygen species (ROS) and oxidative stress. Several studies have shown the involvement of mitochondrial dynamics in the modulation of releasing agouti-related protein (AgRP) and proopiomelanocortin (POMC) neuronal activity, although the mechanisms are still unclear. However, recent studies have shown that changes in mitochondrial metabolism, such as in inflammation, can contribute also to the activation of the microglial system in several diseases, especially degenerative diseases. This review is aimed to summarize the link between mitochondrial dynamics and hypothalamic neurons in the regulation of glucose and energy homeostasis. Furthermore, we focus on the importance of microglia activation in the pathogenesis of many diseases, such as obesity, and on the relationship with mitochondrial dynamics, although this process is still largely unknown.


Subject(s)
Agouti-Related Protein/genetics , Energy Metabolism/genetics , Mitochondrial Dynamics/genetics , Neurons/metabolism , Proprotein Convertases/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Hypothalamus/metabolism , Microglia/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Oxidative Stress/genetics
4.
PLoS One ; 11(4): e0150659, 2016.
Article in English | MEDLINE | ID: mdl-27070318

ABSTRACT

INTRODUCTION: The present study was aimed to assess the in vivo hamster pial microvessel alterations due to 30 min transient bilateral common carotid artery occlusion (BCCAO) and reperfusion (60 min); moreover, the neuroprotective effects of Vaccinium myrtillus extract, containing 34.7% of anthocyanins, were investigated. MATERIALS AND METHODS: Two groups of male hamsters were used: the first fed with control diet and the other with Vaccinium myrtillus supplemented diet. Hamster pial microcirculation was visualized by fluorescence microscopy through an open cranial window. Pial arterioles were classified according to Strahler's method. RESULTS: In age-matched control diet-fed hamsters, BCCAO caused a decrease in diameter of all arterioles. At the end of reperfusion, the reduction of diameter in order 3 arterioles was by 8.4 ± 3.1%, 10.8 ± 2.3% and 12.1 ± 1.1% of baseline in the 2, 4 and 6 month control diet-fed hamsters, respectively. Microvascular permeability and leukocyte adhesion were markedly enhanced, while perfused capillary length (PCL) decreased. The response to acetylcholine and papaverine topical application was impaired; 2'-7'-dichlorofluoresceine-diacetate assay demonstrated a significant ROS production. At the end of BCCAO, in age-matched Vaccinium myrtillussupplemented diet-fed hamsters, the arteriolar diameter did not significantly change compared to baseline. After 60 min reperfusion, order 3 arterioles dilated by 9.3 ± 2.4%, 10.6 ± 3.1% and 11.8 ± 2.7% of baseline in the 2, 4 and 6 month Vaccinium myrtillus supplemented diet-fed hamsters, respectively. Microvascular leakage and leukocyte adhesion were significantly reduced in all groups according to the time-dependent treatment, when compared with the age-matched control diet-fed hamsters. Similarly, the reduction in PCL was progressively prevented. Finally, the response to acetylcholine and papaverine topical application was preserved and there was no significant increase in ROS production in all groups. CONCLUSIONS: In conclusion, Vaccinium myrtillusextract protected pial microcirculation during hypoperfusion-reperfusion, preventing vasoconstriction, microvascular permeability, leukocyte adhesion, reduction in PCL and preserving the endothelium function.


Subject(s)
Anthocyanins/pharmacology , Microcirculation/drug effects , Microvessels/drug effects , Pia Mater/blood supply , Reperfusion Injury/physiopathology , Acetylcholine/pharmacology , Animals , Arterioles/drug effects , Arterioles/metabolism , Capillary Permeability/drug effects , Cell Adhesion/drug effects , Cerebrovascular Circulation/drug effects , Cricetinae , Leukocytes/drug effects , Male , Mesocricetus , Microvessels/metabolism , Neuroprotective Agents/pharmacology , Papaverine/pharmacology , Plant Extracts , Reactive Oxygen Species/metabolism , Reperfusion/methods , Vaccinium myrtillus
5.
Am J Physiol Gastrointest Liver Physiol ; 299(3): G669-76, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20576921

ABSTRACT

The liver is susceptible to such oxidative and metabolic stresses as ischemia-reperfusion (I/R) and fatty acid accumulation. Probiotics are viable microorganisms that restore the gut microbiota and exert a beneficial effect on the liver by inhibiting bacterial enzymes, stimulating immunity, and protecting intestinal permeability. We evaluated Lactobacillus paracasei F19 (LP-F19), for its potential protective effect, in an experimental model of I/R (30 min ischemia and 60 min reperfusion) in rats fed a standard diet or a steatogen [methionine/choline-deficient (MCD)] diet. Both groups consisted of 7 sham-operated rats, 10 rats that underwent I/R, and 10 that underwent I/R plus 8 wk of probiotic dietary supplementation. In rats fed a standard diet, I/R induced a decrease in sinusoid perfusion (P < 0.001), severe liver inflammation, and necrosis besides an increase of tissue levels of malondialdehyde (P < 0.001), tumor necrosis factor-alpha (P < 0.001), interleukin (IL)-1beta (P < 0.001), and IL-6 (P < 0.001) and of serum levels of transaminase (P < 0.001) and lipopolysaccharides (P < 0.001) vs. sham-operated rats. I/R also induced a decrease in Bacterioides, Bifidobacterium, and Lactobacillus spps (P < 0.01, P < 0.001, and P < 0.001, respectively) and an increase in Enterococcus and Enterobacteriaceae (P < 0.01 and P < 0.001, respectively) on intestinal mucosa. The severity of liver and gut microbiota alterations induced by I/R was even greater in rats with liver inflammation and steatosis, i.e., MCD-fed animals. LP-F19 supplementation significantly reduced the harmful effects of I/R on the liver and on gut microbiota in both groups of rats, although the effect was slightly less in MCD-fed animals. In conclusion, LP-F19 supplementation, by restoring gut microbiota, attenuated I/R-related liver injury, particularly in the absence of steatosis.


Subject(s)
Choline/metabolism , Lactobacillus , Liver Diseases/drug therapy , Methionine/deficiency , Probiotics/therapeutic use , Animals , Diet , Endotoxins , Liver/blood supply , Liver/pathology , Liver Diseases/pathology , Microscopy, Fluorescence , Oxidative Stress , Rats , Rats, Wistar , Reperfusion Injury , Transaminases/blood
SELECTION OF CITATIONS
SEARCH DETAIL