Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Antimicrob Agents Chemother ; 67(10): e0068323, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37768317

ABSTRACT

Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1-15), followed by RIF40 (days 16-30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%-115%); tolbutamide, 80% (74%-86%); omeprazole, 55% (47%-65%); dextromethorphan, 77% (68%-86%); midazolam, 62% (49%-78%), and 117% (105%-130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.


Subject(s)
Cytochrome P-450 CYP1A2 , Tuberculosis, Pulmonary , Adult , Humans , Midazolam/therapeutic use , Cytochrome P-450 CYP2D6/metabolism , Caffeine , Rifampin/therapeutic use , Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP3A/metabolism , Dextromethorphan/therapeutic use , Tolbutamide , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 Enzyme System/metabolism , Omeprazole , Drug Interactions , Tuberculosis, Pulmonary/drug therapy , Digoxin/therapeutic use
2.
Lancet Infect Dis ; 17(1): 39-49, 2017 01.
Article in English | MEDLINE | ID: mdl-28100438

ABSTRACT

BACKGROUND: Tuberculosis is the world's leading infectious disease killer. We aimed to identify shorter, safer drug regimens for the treatment of tuberculosis. METHODS: We did a randomised controlled, open-label trial with a multi-arm, multi-stage design. The trial was done in seven sites in South Africa and Tanzania, including hospitals, health centres, and clinical trial centres. Patients with newly diagnosed, rifampicin-sensitive, previously untreated pulmonary tuberculosis were randomly assigned in a 1:1:1:1:2 ratio to receive (all orally) either 35 mg/kg rifampicin per day with 15-20 mg/kg ethambutol, 20 mg/kg rifampicin per day with 400 mg moxifloxacin, 20 mg/kg rifampicin per day with 300 mg SQ109, 10 mg/kg rifampicin per day with 300 mg SQ109, or a daily standard control regimen (10 mg/kg rifampicin, 5 mg/kg isoniazid, 25 mg/kg pyrazinamide, and 15-20 mg/kg ethambutol). Experimental treatments were given with oral 5 mg/kg isoniazid and 25 mg/kg pyrazinamide per day for 12 weeks, followed by 14 weeks of 5 mg/kg isoniazid and 10 mg/kg rifampicin per day. Because of the orange discoloration of body fluids with higher doses of rifampicin it was not possible to mask patients and clinicians to treatment allocation. The primary endpoint was time to culture conversion in liquid media within 12 weeks. Patients without evidence of rifampicin resistance on phenotypic test who took at least one dose of study treatment and had one positive culture on liquid or solid media before or within the first 2 weeks of treatment were included in the primary analysis (modified intention to treat). Time-to-event data were analysed using a Cox proportional-hazards regression model and adjusted for minimisation variables. The proportional hazard assumption was tested using Schoelfeld residuals, with threshold p<0·05 for non-proportionality. The trial is registered with ClinicalTrials.gov (NCT01785186). FINDINGS: Between May 7, 2013, and March 25, 2014, we enrolled and randomly assigned 365 patients to different treatment arms (63 to rifampicin 35 mg/kg, isoniazid, pyrazinamide, and ethambutol; 59 to rifampicin 10 mg/kg, isoniazid, pyrazinamide, SQ109; 57 to rifampicin 20 mg/kg, isoniazid, pyrazinamide, and SQ109; 63 to rifampicin 10 mg/kg, isoniazid, pyrazinamide, and moxifloxacin; and 123 to the control arm). Recruitment was stopped early in the arms containing SQ109 since prespecified efficacy thresholds were not met at the planned interim analysis. Time to stable culture conversion in liquid media was faster in the 35 mg/kg rifampicin group than in the control group (median 48 days vs 62 days, adjusted hazard ratio 1·78; 95% CI 1·22-2·58, p=0·003), but not in other experimental arms. There was no difference in any of the groups in time to culture conversion on solid media. 11 patients had treatment failure or recurrent disease during post-treatment follow-up: one in the 35 mg/kg rifampicin arm and none in the moxifloxacin arm. 45 (12%) of 365 patients reported grade 3-5 adverse events, with similar proportions in each arm. INTERPRETATION: A dose of 35 mg/kg rifampicin was safe, reduced the time to culture conversion in liquid media, and could be a promising component of future, shorter regimens. Our adaptive trial design was successfully implemented in a multi-centre, high tuberculosis burden setting, and could speed regimen development at reduced cost. FUNDING: The study was funded by the European and Developing Countries Clinical Trials partnership (EDCTP), the German Ministry for Education and Research (BmBF), and the Medical Research Council UK (MRC).


Subject(s)
Adamantane/analogs & derivatives , Antitubercular Agents/therapeutic use , Drug Therapy, Combination , Ethylenediamines/therapeutic use , Fluoroquinolones/therapeutic use , Rifampin/therapeutic use , Tuberculosis, Pulmonary/drug therapy , Adamantane/therapeutic use , Adult , Drug Administration Schedule , Ethambutol/therapeutic use , Female , Humans , Isoniazid/therapeutic use , Male , Moxifloxacin , Pyrazinamide/therapeutic use , South Africa , Tanzania , Tuberculosis, Pulmonary/diagnosis
3.
Antimicrob Agents Chemother ; 56(10): 5070-5, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22802250

ABSTRACT

Medicinal herbs may cause clinically relevant drug interactions with antiretroviral agents. Ginkgo biloba extract is a popular herbal product among HIV-infected patients because of its positive effects on cognitive function. Raltegravir, an HIV integrase inhibitor, is increasingly being used as part of combined antiretroviral therapy. Clinical data on the potential inhibitory or inductive effect of ginkgo biloba on the pharmacokinetics of raltegravir were lacking, and concomitant use was not recommended. We studied the effect of ginkgo biloba extract on the pharmacokinetics of raltegravir in an open-label, randomized, two-period, crossover phase I trial in 18 healthy volunteers. Subjects were randomly assigned to a regimen of 120 mg of ginkgo biloba twice daily for 15 days plus a single dose of raltegravir (400 mg) on day 15, a washout period, and 400 mg of raltegravir on day 36 or the test and reference treatments in reverse order. Pharmacokinetic sampling of raltegravir was performed up to 12 h after intake on an empty stomach. All subjects (9 male) completed the trial, and no serious adverse events were reported. Geometric mean ratios (90% confidence intervals) of the area under the plasma concentration-time curve from dosing to infinity (AUC(0-∞)) and the maximum plasma concentration (C(max)) of raltegravir with ginkgo biloba versus raltegravir alone were 1.21 (0.93 to 1.58) and 1.44 (1.03 to 2.02). Ginkgo biloba did not reduce raltegravir exposure. The potential increase in the C(max) of raltegravir is probably of minor importance, given the large intersubject variability of raltegravir pharmacokinetics and its reported safety profile.


Subject(s)
Ginkgo biloba/chemistry , HIV Integrase Inhibitors/pharmacokinetics , Plant Extracts/pharmacology , Pyrrolidinones/pharmacokinetics , Adolescent , Adult , Drug Interactions , Female , Humans , Male , Middle Aged , Plant Extracts/chemistry , Raltegravir Potassium , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL