Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Proc Biol Sci ; 286(1902): 20190471, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31039721

ABSTRACT

North African history and populations have exerted a pivotal influence on surrounding geographical regions, although scant genetic studies have addressed this issue. Our aim is to understand human historical migrations in the coastal surroundings of North Africa. We built a refined genome-wide dataset of North African populations to unearth the fine-scale genetic structure of the region, using haplotype information. The results suggest that the gene-flow from North Africa into the European Mediterranean coast (Tuscany and the Iberian Peninsula) arrived mainly from the Mediterranean coast of North Africa. In Tuscany, this North African admixture date estimate suggests the movement of peoples during the fall of the Roman Empire around the fourth century. In the Iberian Peninsula, the North African component probably reflects the impact of the Arab expansion since the seventh century and the subsequent expansion of the Christian Kingdoms. By contrast, the North African component in the Canary Islands has a source genetically related to present-day people from the Atlantic North African coast. We also find sub-Saharan gene-flow from the Senegambia region in the Canary Islands. Specifically, we detect a complex signal of admixture involving Atlantic, Senegambian and European sources intermixing around the fifteenth century, soon after the Castilian conquest. Our results highlight the differential genetic influence of North Africa into the surrounding coast and show that specific historical events have not only had a socio-cultural impact but additionally modified the gene pool of the populations.


Subject(s)
Black People/genetics , Gene Flow , Human Migration , White People/genetics , Africa, Northern/ethnology , Black People/history , Europe , Genetics, Population , Genome-Wide Association Study , Haplotypes , History, Ancient , History, Medieval , Humans , Spain , White People/history
2.
Am J Phys Anthropol ; 163(3): 591-601, 2017 07.
Article in English | MEDLINE | ID: mdl-28464262

ABSTRACT

OBJECTIVES: To determine genetic differences between agriculturalist and hunter-gatherer southern Native American populations for selected metabolism-related markers and to test whether Neel's thrifty genotype hypothesis (TGH) could explain the genetic patterns observed in these populations. MATERIALS AND METHODS: 375 Native South American individuals from 17 populations were genotyped using six markers (APOE rs429358 and rs7412; APOA2 rs5082; CD36 rs3211883; TCF7L2 rs11196205; and IGF2BP2 rs11705701). Additionally, APOE genotypes from 39 individuals were obtained from the literature. AMOVA, main effects, and gene-gene interaction tests were performed. RESULTS: We observed differences in allele distribution patterns between agriculturalists and hunter-gatherers for some markers. For instance, between-groups component of genetic variance (FCT ) for APOE rs429358 showed strong differences in allelic distributions between hunter-gatherers and agriculturalists (p = 0.00196). Gene-gene interaction analysis indicated that the APOE E4/CD36 TT and APOE E4/IGF2BP2 A carrier combinations occur at a higher frequency in hunter-gatherers, but this combination is not replicated in archaic (Neanderthal and Denisovan) and ancient (Anzick, Saqqaq, Ust-Ishim, Mal'ta) hunter-gatherer individuals. DISCUSSION: A complex scenario explains the observed frequencies of the tested markers in hunter-gatherers. Different factors, such as pleotropic alleles, rainforest selective pressures, and population dynamics, may be collectively shaping the observed genetic patterns. We conclude that although TGH seems a plausible hypothesis to explain part of the data, other factors may be important in our tested populations.


Subject(s)
Agriculture/history , Indians, South American/genetics , Indians, South American/history , Polymorphism, Single Nucleotide/genetics , Anthropology, Physical , Apolipoproteins E/genetics , CD36 Antigens/genetics , Genotype , History, Ancient , Humans , RNA-Binding Proteins/genetics
3.
Proc Natl Acad Sci U S A ; 114(9): 2195-2199, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28193867

ABSTRACT

When humans moved from Asia toward the Americas over 18,000 y ago and eventually peopled the New World they encountered a new environment with extreme climate conditions and distinct dietary resources. These environmental and dietary pressures may have led to instances of genetic adaptation with the potential to influence the phenotypic variation in extant Native American populations. An example of such an event is the evolution of the fatty acid desaturases (FADS) genes, which have been claimed to harbor signals of positive selection in Inuit populations due to adaptation to the cold Greenland Arctic climate and to a protein-rich diet. Because there was evidence of intercontinental variation in this genetic region, with indications of positive selection for its variants, we decided to compare the Inuit findings with other Native American data. Here, we use several lines of evidence to show that the signal of FADS-positive selection is not restricted to the Arctic but instead is broadly observed throughout the Americas. The shared signature of selection among populations living in such a diverse range of environments is likely due to a single and strong instance of local adaptation that took place in the common ancestral population before their entrance into the New World. These first Americans peopled the whole continent and spread this adaptive variant across a diverse set of environments.


Subject(s)
Fatty Acid Desaturases/genetics , Human Migration/history , Indians, Central American/genetics , Indians, North American/genetics , Indians, South American/genetics , Inuit/genetics , Selection, Genetic , Asian People/genetics , Asian People/history , Black People/genetics , Black People/history , Chromosome Mapping , Chromosomes, Human , Genetics, Population , History, Ancient , Humans , Indians, Central American/history , Indians, North American/history , Indians, South American/history , Inuit/history , Polymorphism, Single Nucleotide , White People/genetics , White People/history
4.
Nature ; 536(7617): 419-24, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27459054

ABSTRACT

We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter-gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a 'Basal Eurasian' lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter-gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter-gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.


Subject(s)
Agriculture/history , Genomics , Human Migration/history , Phylogeny , Racial Groups/genetics , Africa, Eastern , Animals , Armenia , Asia , DNA/analysis , Europe , History, Ancient , Humans , Hybridization, Genetic/genetics , Iran , Israel , Jordan , Neanderthals/genetics , Phylogeography , Turkey
5.
Proc Natl Acad Sci U S A ; 110(29): 11791-6, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23733930

ABSTRACT

Human genetic diversity in southern Europe is higher than in other regions of the continent. This difference has been attributed to postglacial expansions, the demic diffusion of agriculture from the Near East, and gene flow from Africa. Using SNP data from 2,099 individuals in 43 populations, we show that estimates of recent shared ancestry between Europe and Africa are substantially increased when gene flow from North Africans, rather than Sub-Saharan Africans, is considered. The gradient of North African ancestry accounts for previous observations of low levels of sharing with Sub-Saharan Africa and is independent of recent gene flow from the Near East. The source of genetic diversity in southern Europe has important biomedical implications; we find that most disease risk alleles from genome-wide association studies follow expected patterns of divergence between Europe and North Africa, with the principal exception of multiple sclerosis.


Subject(s)
Gene Flow/genetics , Genetic Variation , Genetics, Population , White People/genetics , White People/history , Africa, Northern , Demography , Europe , Haplotypes/genetics , History, Ancient , Humans , Polymorphism, Single Nucleotide/genetics
6.
Hum Hered ; 76(3-4): 194-200, 2013.
Article in English | MEDLINE | ID: mdl-24861864

ABSTRACT

OBJECTIVES: The population history of European Romani is characterized by extensive bottleneck and admixture events, but the impact of this unique demographic history on the genetic risk for disease remains unresolved. METHODS: Genome-wide SNP data on Romani, non-Romani Europeans and Indians were analyzed. The excess of homozygous variants in Romani genomes was assessed according to their potential functional effect. We also explored the frequencies of risk variants associated with five common diseases which are present at an increased prevalence in Romani compared to other Europeans. RESULTS: Slightly deleterious variants are present at increased frequencies in European Romani, likely a result of relaxed purifying selection due to bottlenecks in their population history. The frequencies of SNPs associated with common metabolic and cardiovascular diseases are also increased compared to their European hosts. CONCLUSIONS: As observed in other founder populations, we confirm the impact of bottlenecks on the abundance of slightly deleterious variants in Romani groups, probably including metabolic and cardiovascular risk variants.


Subject(s)
Ethnicity/genetics , Genetic Predisposition to Disease , Genetics, Population/history , White People/genetics , History, Ancient , Homozygote , Humans , Polymorphism, Single Nucleotide/genetics
7.
PLoS Genet ; 8(1): e1002397, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22253600

ABSTRACT

North African populations are distinct from sub-Saharan Africans based on cultural, linguistic, and phenotypic attributes; however, the time and the extent of genetic divergence between populations north and south of the Sahara remain poorly understood. Here, we interrogate the multilayered history of North Africa by characterizing the effect of hypothesized migrations from the Near East, Europe, and sub-Saharan Africa on current genetic diversity. We present dense, genome-wide SNP genotyping array data (730,000 sites) from seven North African populations, spanning from Egypt to Morocco, and one Spanish population. We identify a gradient of likely autochthonous Maghrebi ancestry that increases from east to west across northern Africa; this ancestry is likely derived from "back-to-Africa" gene flow more than 12,000 years ago (ya), prior to the Holocene. The indigenous North African ancestry is more frequent in populations with historical Berber ethnicity. In most North African populations we also see substantial shared ancestry with the Near East, and to a lesser extent sub-Saharan Africa and Europe. To estimate the time of migration from sub-Saharan populations into North Africa, we implement a maximum likelihood dating method based on the distribution of migrant tracts. In order to first identify migrant tracts, we assign local ancestry to haplotypes using a novel, principal component-based analysis of three ancestral populations. We estimate that a migration of western African origin into Morocco began about 40 generations ago (approximately 1,200 ya); a migration of individuals with Nilotic ancestry into Egypt occurred about 25 generations ago (approximately 750 ya). Our genomic data reveal an extraordinarily complex history of migrations, involving at least five ancestral populations, into North Africa.


Subject(s)
Black People/genetics , Gene Flow/genetics , Genetic Variation , Population Dynamics , Population , Africa South of the Sahara/ethnology , Africa, Northern , Black People/history , DNA, Mitochondrial/genetics , Egypt, Ancient , Emigration and Immigration , Europe , Gene Pool , Genomics , Genotype , Haplotypes , History, Ancient , Humans , Middle East , Morocco , Polymorphism, Single Nucleotide , White People/genetics , White People/history
8.
Mol Biol Evol ; 29(1): 25-30, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21890475

ABSTRACT

The information left by recombination in our genomes can be used to make inferences on our recent evolutionary history. Specifically, the number of past recombination events in a population sample is a function of its effective population size (Ne). We have applied a method, Identifying Recombination in Sequences (IRiS), to detect specific past recombination events in 30 Old World populations to infer their Ne. We have found that sub-Saharan African populations have an Ne that is approximately four times greater than those of non-African populations and that outside of Africa, South Asian populations had the largest Ne. We also observe that the patterns of recombinational diversity of these populations correlate with distance out of Africa if that distance is measured along a path crossing South Arabia. No such correlation is found through a Sinai route, suggesting that anatomically modern humans first left Africa through the Bab-el-Mandeb strait rather than through present Egypt.


Subject(s)
Evolution, Molecular , Population Density , Racial Groups/genetics , Racial Groups/history , Recombination, Genetic , Africa , Asia , Databases, Genetic , Europe , History, Ancient , Humans , Male , Polymorphism, Single Nucleotide , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL