Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Environ Manage ; 351: 119758, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086118

ABSTRACT

Targeted conservation approaches seek to focus resources on areas where they can deliver the greatest benefits and are recognized as key to reducing nonpoint source nutrients from agricultural landscapes into sensitive receiving waters. Moreover, there is growing recognition of the importance and complementarity of in-field and edge-of-field conservation for reaching nutrient reduction goals. Here we provide a generic prioritization that can help with spatial targeting and applied it across the conterminous US (CONUS). The prioritization begins with identifying areas with high agricultural nutrient surplus, i.e., where the most nitrogen (N) and/or phosphorus (P) inputs are left on the landscape after crop harvest. Subwatersheds with high surplus included 52% and 50% of CONUS subwatersheds for N and P, respectively, and were located predominantly in the Midwest for N, in the South for P, and in California for both N and P. Then we identified the most suitable conservation strategies using a hierarchy of metrics including nutrient use efficiency (proportion of new nutrient inputs removed by crop harvest), tile drainage, existing buffers for agricultural run-off, and wetland restoration potential. In-field nutrient input reduction emerged as a priority because nutrient use efficiency fell below a high but achievable goal of 0.7 (30% of nutrients applied are not utilized) in 45% and 44% of CONUS subwatersheds for N and P, respectively. In many parts of the southern and western US, in-field conservation (i.e., reducing inputs + preventing nutrients from leaving fields) alone was likely the optimal strategy as agriculture was already well-buffered. However, stacking in-field conservation with additional edge-of-field buffering would be important to conservation strategies in 35% and 29% of CONUS subwatersheds for N and P, respectively. Nutrient use efficiencies were often high enough in the Midwest that proposed strategies focused more on preventing nutrients from leaving fields, managing tile effluent, and buffering agricultural fields. Almost all major river basins would benefit from a variety of nutrient reduction conservation strategies, underscoring the potential of targeted approaches to help limit excess nutrients in surface and ground waters.


Subject(s)
Agriculture , Groundwater , Phosphorus , Nitrogen , Nutrients
2.
Water Res ; 124: 177-191, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28756220

ABSTRACT

Humans have greatly accelerated phosphorus (P) flows from land to aquatic ecosystems, causing eutrophication, harmful algal blooms, and hypoxia. A variety of statistical and mechanistic models have been used to explore the relationship between P management on land and P losses to waterways, but our ability to predict P losses from watersheds often relies on small scale catchment studies, where detailed measurements can be made, or global scale models that that are often too coarse-scaled to be used directly in the management decision-making process. Here we constructed spatially explicit datasets of terrestrial P inputs and outputs across the conterminous U.S. (CONUS) for 2012. We use this dataset to improve understanding of P sources and balances at the national scale and to investigate whether well-standardized input data at the continental scale can be used to improve predictions of hydrologic P export from watersheds across the U.S. We estimate that in 2012 agricultural lands received 0.19 Tg more P as fertilizer and confined manure than was harvested in major crops. Approximately 0.06 Tg P was lost to waterways as sewage and detergent nationally based on per capita loads in 2012. We compared two approaches for calculating non-agricultural P waste export to waterways, and found that estimates based on per capita P loads from sewage and detergent were 50% greater than Discharge Monitoring Report Pollutant Loading Tool. This suggests that the tool is likely underestimating P export in waste the CONUS scale. TP and DIP concentrations and TP yields were generally correlated more strongly with runoff than with P inputs or P balances, but even the relationships between runoff and P export were weak. Including P inputs as independent variables increased the predictive capacity of the best-fit models by at least 20%, but together inputs and runoff explained 40% of the variance in P concentration and 46-54% of the variance in P yield. By developing and applying a high-resolution P budget for the CONUS this study confirms that both hydrology and P inputs and sinks play important roles in aquatic P loading across a wide range of environments.


Subject(s)
Agriculture , Environmental Monitoring , Fertilizers , Phosphorus/analysis , Eutrophication , Humans , Manure , United States
3.
Ecol Modell ; 360: 194-203, 2017 Sep 24.
Article in English | MEDLINE | ID: mdl-32132767

ABSTRACT

Nitrogen (N) presents an important challenge for sustainability. Human intervention in the global nitrogen cycle has been pivotal in in providing goods and services to society. However, release of N beyond its intended societal use has many negative health and environmental consequences. Several systems modeling approaches have been developed to understand the trade-offs between the beneficial and harmful effects of N. These efforts include life cycle modeling, integrated management practices and sustainability metrics for individuals and communities. However, these approaches do not connect economic and ecological N flows in physical units throughout the system, which could better represent these trade-offs for decision-makers. Physical Input-Output Table (PIOT) based models present a viable complementary solution to overcome this limitation. We developed a N-PIOT for Illinois representing the interdependence of sectors in 2002, using N mass units. This allows studying the total N flow required to produce a certain amount of N in the final product. An Environmentally Extended Input Output (EEIO) based approach was used to connect the physical economic production to environmental losses; allowing quantification of total environmental impact to support agricultural production in Illinois. A bottom up approach was used to develop the N-PIOT using Material Flow Analysis (MFA) tracking N flows associated with top 3 commodities (Corn, Soybean and Wheat). These three commodities cover 99% of N fertilizer use in Illinois. The PIOT shows that of all the N inputs to corn production the state exported 68% of N embedded in useful products, 9% went to animal feed manufacturing and only 0.03% was consumed directly within the state. Approximately 35% of N input to soybean farming ended up in animal feed. Release of N to the environment was highest from corn farming, at about 21.8% of total N fertilizer inputs, followed by soybean (9.2%) and wheat farming (4.2%). The model also allowed the calculation of life cycle N use efficiency for N based on physical flows in the economy. Hence, PIOTs prove to be a viable tool for developing a holistic approach to manage disrupted biogeochemical cycles, since these provide a detailed insight into physical flows in economic systems and allow physical coupling with ecological N flows.

SELECTION OF CITATIONS
SEARCH DETAIL