Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Theranostics ; 10(25): 11580-11594, 2020.
Article in English | MEDLINE | ID: mdl-33052234

ABSTRACT

Rationale: MQ1, a snake toxin which targets with high nanomolar affinity and absolute selectivity for the type 2 vasopressin receptor (V2R), is a drug candidate for renal diseases and a molecular probe for imaging cells or organs expressing V2R. Methods: MQ1's pharmacological properties were characterized and applied to a rat model of hyponatremia. Its PK/PD parameters were determined as well as its therapeutic index. Fluorescently and radioactively labeled MQ1 were chemically synthesized and associated with moderate loss of affinity. MQ1's dynamic biodistribution was monitored by positron emission tomography. Confocal imaging was used to observe the labeling of three cancer cell lines. Results: The inverse agonist property of MQ1 very efficiently prevented dDAVP-induced hyponatremia in rats with low nanomolar/kg doses and with a very large therapeutic index. PK (plasma MQ1 concentrations) and PD (diuresis) exhibited a parallel biphasic decrease. The dynamic biodistribution showed that MQ1 targets the kidneys and then exhibits a blood and kidney biphasic decrease. Whatever the approach used, we found a T1/2α between 0.9 and 3.8 h and a T1/2ß between 25 and 46 h and demonstrated that the kidneys were able to retain MQ1. Finally, the presence of functional V2R expressed at the membrane of cancer cells was, for the first time, demonstrated with a specific fluorescent ligand. Conclusion: As the most selective V2 binder, MQ1 is a new promising drug for aquaresis-related diseases and a molecular probe to visualize in vitro and in vivo V2R expressed physiologically or under pathological conditions.


Subject(s)
Antidiuretic Hormone Receptor Antagonists/pharmacology , Hyponatremia/drug therapy , Receptors, Vasopressin/metabolism , Snake Venoms/pharmacology , Water/metabolism , Animals , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Deamino Arginine Vasopressin/administration & dosage , Diabetes Insipidus, Nephrogenic/drug therapy , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Hyponatremia/chemically induced , Hyponatremia/diagnosis , Hyponatremia/metabolism , Kidney/diagnostic imaging , Kidney/metabolism , Male , Molecular Imaging/methods , Positron-Emission Tomography , Rats , Renal Elimination/drug effects , Snake Venoms/therapeutic use , Sodium/blood , Tissue Distribution
2.
Gen Comp Endocrinol ; 258: 15-32, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29155265

ABSTRACT

It is now accepted that vasopressin, through V1A/V1B receptors, centrally regulates cognitive functions such as memory, affiliation, stress, fear and depression. However, the respective roles of these receptor isoforms and their contribution to stress-related pathologies remain uncertain. The development of new therapeutic treatments requires a precise knowledge of the distribution of these receptors within the brain, which has been so far hampered by the lack of selective V1B markers. In the present study, we have determined the pharmacological properties of three new potent rat V1B fluorescent ligands and demonstrated that they constitute valuable tools for simultaneous visualization and activation of native V1B receptors in living rat brain tissue. Thus, d[Leu4,Lys-Alexa 647)8]VP (analogue 3), the compound with the best affinity-selectivity/fluorescence ratio for the V1B receptor emerged as the most promising. The rat brain regions most concerned by stress such as hippocampus, olfactory bulbs, cortex and amygdala display the highest V1B fluorescent labelling with analogue 3. In the hippocampus CA2, V1B receptors are located on glutamatergic, not GABAergic neurones, and are absent from astrocytes. Using AVP-EGFP rats, we demonstrate the presence of V1B autoreceptors on AVP-secreting neurones not only in the hypothalamus, but also sparsely in the hippocampus. Finally, using both electrophysiology and visualization of ERK phosphorylation, we show analogue 3-induced activation of the V1B receptor in situ. This will help to analyse expression and functionality of V1B receptors in the brain and contribute to further explore the AVPergic circuitry in normal and pathological conditions.


Subject(s)
Brain/anatomy & histology , Brain/metabolism , Fluorescent Dyes/metabolism , Receptors, Vasopressin/metabolism , Animals , Arginine Vasopressin/metabolism , Astrocytes/metabolism , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Hypothalamus/metabolism , Ligands , Male , Neuroanatomy , Neurons/metabolism , Pituitary Gland/cytology , Rats, Sprague-Dawley , Receptors, GABA/metabolism , Staining and Labeling , Vasopressins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL