Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Bioengineered ; 13(4): 8432-8477, 2022 04.
Article in English | MEDLINE | ID: mdl-35260028

ABSTRACT

Good quality of water determines the healthy life of living beings on this earth. The cleanliness of water was interrupted by the pollutants emerging out of several human activities. Industrialization, urbanization, heavy population, and improper disposal of wastes are found to be the major reasons for the contamination of water. Globally, the inclusion of volatile organic compounds (VOCs) and heavy metals released by manufacturing industries, pharmaceuticals, and petrochemical processes have created environmental issues. The toxic nature of these pollutants has led researchers, scientists, and industries to exhibit concern toward the complete eradication of them. In this scenario, the development of wastewater treatment methodologies at low cost and in an eco-friendly way had gained importance at the international level. Recently, bio-based technologies were considered for environmental remedies. Biofiltration-based works have shown a significant result for the removal of volatile organic compounds and heavy metals in the treatment of wastewater. This was done with several biological sources such as bacteria, fungi, algae, plants, yeasts, etc. The biofiltration technique is cost-effective, simple, biocompatible, sustainable, and eco-friendly compared to conventional techniques. This review article provides deep insight into biofiltration technologies engaged in the removal of volatile organic compounds and heavy metals in the wastewater treatment process.


Subject(s)
Environmental Pollutants , Metals, Heavy , Volatile Organic Compounds , Water Pollutants, Chemical , Biodegradation, Environmental , Humans , Wastewater , Water
2.
Chemosphere ; 274: 129734, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33548641

ABSTRACT

A lot of studies on spinel ferrites (MFe2O4, M = divalent metal ion) and their binary nanocomposites as photocatalysts in the decontamination of wastewater have been performed, because MFe2O4 nanoparticles are relatively stable, biocompatible and low-cost efficient photocatalyst. The separation of MFe2O4 photocatalyst is easy owing to its excellent magnetic behavior. With this background, the recent developments on photocatalytic performances of MFe2O4 based binary nanocomposites were comprehensively reviewed. Especially, a focus on MFe2O4/metal oxides, MFe2O4/carbon based materials, MFe2O4/polymers, MFe2O4/metal nanoparticles and MFe2O4/other compounds for the photocatalytic degradation of dyes, emerging contaminants and inorganic pollutants has been thoroughly given. The advantages of MFe2O4 based nanocomposites as photocatalysts were also discussed. In addition, the possible pathway of active free radical generation by these photocatalysts under visible and ultraviolet irradiation has been explained. A comparison of photocatalytic activities of MFe2O4 based binary nanocomposites with recent reports has been carried out. This review concludes that MFe2O4 based binary nanocomposites have potential capacity in water purification technology. Nevertheless, their practical utilization in water treatment plants still needs to be further studied.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Water Purification , Aluminum Oxide , Catalysis , Ferric Compounds , Magnesium Oxide
SELECTION OF CITATIONS
SEARCH DETAIL