Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Nutr Biochem ; 89: 108569, 2021 03.
Article in English | MEDLINE | ID: mdl-33321185

ABSTRACT

Cumulative evidence indicates that excessive consumption of calories from saturated fat contributes to the development of Alzheimer's disease (AD). Here, we assess the triggering and progression of AD pathology induced by a high-fat diet (HFD), and the effects of resveratrol, a polyphenol found in common dietary sources with pleiotropic neuroprotective activities. Over 16 weeks, male wild type (WT) and AD transgenic 5XFAD mice were fed a control diet, HFD (60% kcal from fat), or HFD supplemented with 0.1% resveratrol. Resveratrol protected against HFD-induced memory loss in WT mice and prevented memory loss in 5XFAD mice. Resveratrol also reduced the amyloid burden aggravated by HFD in 5XFAD, and protected against HFD-induced tau pathology in both WT and 5XFAD strains. At the mechanistic level, resveratrol inhibited the HFD-increased amyloidogenic processing of the amyloid precursor protein in both strains; it also restored abnormal high levels in the proteolytic activity of the ubiquitin-proteasome system induced by HFD, suggesting the presence of a compensatory mechanism to counteract the accumulation of aberrant proteins. Thus, our data suggest that resveratrol can correct the harmful effects of HFD in the brain and may be a potential therapeutic agent against obesity-related disorders and AD pathology.


Subject(s)
Alzheimer Disease/drug therapy , Neuroprotective Agents/pharmacology , Resveratrol/pharmacology , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Cognitive Dysfunction/prevention & control , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids/adverse effects , Humans , Male , Memory Disorders/prevention & control , Mice , Mice, Transgenic , Neuroprotection , Obesity/drug therapy , Obesity/pathology , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Ubiquitin/metabolism
2.
J Pineal Res ; 65(4): e12515, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29907977

ABSTRACT

Melatonin is an endogenous pleiotropic molecule which orchestrates regulatory functions and protective capacity against age-related ailments. The increase in circulating levels of melatonin through dietary supplements intensifies its health benefits. Investigations in animal models have shown that melatonin protects against Alzheimer's disease (AD)-like pathology, although clinical studies have not been conclusive. We hypothesized that melatonin induces changes in the brain that prevent or attenuate AD by increasing resilience. Therefore, we treated healthy nontransgenic (NoTg) and AD transgenic (3xTg-AD) 6-month-old mice with a daily dose of 10 mg/kg of melatonin until 12 months of age. As expected, melatonin reversed cognitive impairment and dementia-associated behaviors of anxiety and apathy and reduced amyloid and tau burden in 3xTg-AD mice. Remarkably, melatonin induced cognitive enhancement and higher wellness level-related behavior in NoTg mice. At the mechanism level, NF-κB and proinflammatory cytokine expressions were decreased in both NoTg and 3xTg-AD mice. The SIRT1 pathway of longevity and neuroprotection was also activated in both mouse strains after melatonin dosing. Furthermore, we explored new mechanisms and pathways not previously associated with melatonin treatment such as the ubiquitin-proteasome proteolytic system and the recently proposed neuroprotective Gas6/TAM pathway. The upregulation of proteasome activity and the modulation of Gas6 and its receptors by melatonin were similarly displayed by both NoTg and 3xTg-AD mice. Therefore, these results confirm the potential of melatonin treatment against AD pathology, by way of opening new pathways in its mechanisms of action, and demonstrating that melatonin induces cognitive enhancement and brain resilience against neurodegenerative processes.


Subject(s)
Brain/metabolism , Melatonin/therapeutic use , Neurodegenerative Diseases/prevention & control , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Animals , Blotting, Western , Brain/drug effects , Cognition/drug effects , Dementia/metabolism , Dementia/prevention & control , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Mice , Neurodegenerative Diseases/metabolism , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL