Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Toxicol In Vitro ; 47: 129-136, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29174024

ABSTRACT

The use of natural products in therapeutics has been growing over the years. Lignans are compounds with large pharmaceutical use, which has aroused interest in the search for new drugs to treat diseases. The present study evaluated the cytotoxicity of (-)-trachelogenin, a dibenzylbutyrolactone type lignan isolated from Combretum fruticosum, against several tumor and non-tumor cell lines using the MTT assay and its possible mechanism of action. (-)-Trachelogenin showed IC50 values ranging of 0.8-32.4µM in SF-295 and HL-60 cell lines, respectively and IC50 values >64µM in non-tumor cell lines. (-)-trachelogenin persistently induced autophagic cell death, with cytoplasmic vacuolization and formation of autophagosomes mediated by increasing LC3 activation and altering the expression levels of Beclin-1.


Subject(s)
4-Butyrolactone/analogs & derivatives , Antineoplastic Agents, Phytogenic/pharmacology , Autophagy/drug effects , Colonic Neoplasms/drug therapy , Combretum/chemistry , Drug Discovery , Plant Stems/chemistry , 4-Butyrolactone/adverse effects , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/pharmacology , Antineoplastic Agents, Phytogenic/adverse effects , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Autophagosomes/drug effects , Autophagosomes/pathology , Beclin-1/agonists , Beclin-1/metabolism , Brazil , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/pathology , Combretum/growth & development , Ethnopharmacology , HCT116 Cells , Humans , Inhibitory Concentration 50 , Medicine, Traditional , Microtubule-Associated Proteins/agonists , Microtubule-Associated Proteins/metabolism , Molecular Structure , Neoplasm Proteins/agonists , Neoplasm Proteins/metabolism , Plant Stems/growth & development , Vacuoles/drug effects , Vacuoles/pathology
2.
Mutat Res ; 701(2): 153-63, 2010 Aug 30.
Article in English | MEDLINE | ID: mdl-20599626

ABSTRACT

Kaurane diterpenes are considered important compounds in the development of new highly effective anticancer chemotherapeutic agents. Genotoxic effects of anticancer drugs in non-tumour cells are of special significance due to the possibility that they induce secondary tumours in cancer patients. In this context, we evaluated the genotoxic and mutagenic potential of the natural diterpenoid kaurenoic acid (KA), i.e. (-)-kaur-16-en-19-oic acid, isolated from Xylopia sericeae St. Hill, using several standard in vitro and in vivo protocols (comet, chromosomal aberration, micronucleus and Saccharomyces cerevisiae assays). Also, an analysis of structure-activity relationships was performed with two natural diterpenoid compounds, 14-hydroxy-kaurane (1) and xylopic acid (2), isolated from X. sericeae, and three semi-synthetic derivatives of KA (3-5). In addition, considering the importance of the exocyclic double bond (C16) moiety as an active pharmacophore of KA cytotoxicity, we also evaluated the hydrogenated derivative of KA, (-)-kauran-19-oic acid (KAH), to determine the role of the exocyclic bond (C16) in the genotoxic activity of KA. In summary, the present study shows that KA is genotoxic and mutagenic in human peripheral blood leukocytes (PBLs), yeast (S. cerevisiae) and mice (bone marrow, liver and kidney) probably due to the generation of DNA double-strand breaks (DSB) and/or inhibition of topoisomerase I. Unlike KA, compounds 1-5 and KAH are completely devoid of genotoxic and mutagenic effects under the experimental conditions used in this study, suggesting that the exocyclic double bond (C16) moiety may be the active pharmacophore of the genetic toxicity of KA.


Subject(s)
Diterpenes/chemistry , Diterpenes/toxicity , Mutagens/toxicity , Plant Extracts/toxicity , Animals , Cell Line, Tumor , Humans , Male , Mice , Mutagenicity Tests , Structure-Activity Relationship
3.
Phytomedicine ; 16(11): 1059-63, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19423311

ABSTRACT

The alkaloid extract and five alkaloids isolated from subterranean stem bark of Duguetia furfuracea (Annonaceae) were investigated for the following activities: antitumoral, trypanocidal and leishmanicidal. Dicentrinone showed weak cytotoxicity, but it had the strongest leishmanicidal activity (IC(50) 0.01 microM). Duguetine and duguetine beta-N-oxide caused considerable antitumoral activity in every cell lines evaluated, although duguetine was more active against trypomastigote forms (IC(50) 9.32 microM) than other alkaloids tested.


Subject(s)
Alkaloids/pharmacology , Annonaceae/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Leishmania braziliensis/drug effects , Trypanocidal Agents/isolation & purification , Alkaloids/isolation & purification , Aporphines/isolation & purification , Aporphines/pharmacology , Cell Line, Tumor , Humans , Molecular Structure , Plant Extracts/pharmacology , Trypanosoma cruzi/drug effects
4.
Cell Biol Toxicol ; 25(3): 245-51, 2009 Jun.
Article in English | MEDLINE | ID: mdl-18465199

ABSTRACT

The leukemia cell line HL60 is widely used in studies of the cell cycle, apoptosis, and adhesion mechanisms in cancer cells. We conducted a focused cytogenetic study in an HL60 cell line, by analyzing GTG-banded chromosomes before and after treatment with pisosterol (at 0.5, 1.0, and 1.8 microg/ml), a triterpene isolated from Pisolithus tinctorius, a fungus collected in the Northeast of Brazil. Before treatment, 99% of the cells showed the homogeneously staining region (HSR) 8q24 aberration. After treatment with 1.8 microg/ml pisosterol, 90% of the analyzed cells lacked this aberration. We further performed a pulse test, in which the cells treated with pisosterol (0.5, 1.0, and 1.8 microg/ml) were washed and re-incubated in the absence of pisosterol. Only 30% of the analyzed cells lacked the HSR 8q24 aberration, suggesting that pisosterol probably blocks the cells with HSRs at interphase. No effects were detected at lower concentrations. At the highest concentration examined (1.8 microg/ml), pisosterol also inhibited cell growth, but this effect was not observed in the pulse test, reinforcing our hypothesis that, at the concentrations tested, pisosterol probably does not induce cell death in the HL60 line. The results found for pisosterol were compared with those for doxorubicin. Cells that do not show a high degree of gene amplification (HSRs and double-minute chromosomes) have a less aggressive and invasive behavior and are easy targets for chemotherapy. Therefore, further studies are needed to examine the use of pisosterol in combination with conventional anti-cancer therapy.


Subject(s)
Antineoplastic Agents/toxicity , Basidiomycota/chemistry , Cell Cycle/drug effects , Gene Amplification/drug effects , HL-60 Cells/drug effects , Leukemia, Promyelocytic, Acute/drug therapy , Terpenes/toxicity , Chromosome Aberrations/drug effects , Chromosome Banding , Doxorubicin/toxicity , Drug Screening Assays, Antitumor , HL-60 Cells/physiology , Humans , Mitotic Index , Plant Extracts/toxicity
5.
Food Chem Toxicol ; 46(1): 388-92, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17897764

ABSTRACT

The genotoxic effect of two tanshinones isolated from roots of Hyptis martiussi Benth (Labiatae) was studied using V79 (Chinese hamster lung) cells by the alkaline comet assay and micronucleus test. Tanshinones were incubated with the cells at concentrations of 1, 3, 6 and 12 microg/mL for 3 h. Tanshinones were shown to be quite strongly genotoxic against V79 cells at all tested concentrations. The data obtained provide support to the view that tanshinones has DNA damaging activity in cultured V79 cells under the conditions of the assays.


Subject(s)
Antioxidants/therapeutic use , Carbon Tetrachloride Poisoning/prevention & control , Chemical and Drug Induced Liver Injury/prevention & control , Flavonoids/therapeutic use , Animals , Blood Chemical Analysis , Carbon Tetrachloride Poisoning/pathology , Catalase/metabolism , Chemical and Drug Induced Liver Injury/pathology , Fatty Liver/chemically induced , Fatty Liver/pathology , Glutathione/metabolism , Glutathione Transferase/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Lipid Peroxidation/drug effects , Liver/pathology , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Plant Extracts , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
6.
Braz J Med Biol Res ; 39(6): 801-7, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16751987

ABSTRACT

Piplartine {5,6-dihydro-1-[1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)pyridinone} and piperine {1-5-(1,3)-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]piperidine} are alkaloid amides isolated from Piper. Both have been reported to show cytotoxic activity towards several tumor cell lines. In the present study, the in vivo antitumor activity of these compounds was evaluated in 60 female Swiss mice (N = 10 per group) transplanted with Sarcoma 180. Histopathological and morphological analyses of the tumor and the organs, including liver, spleen, and kidney, were performed in order to evaluate the toxicological aspects of the treatment with these amides. Administration of piplartine or piperine (50 or 100 mg kg(-1) day(-1) intraperitoneally for 7 days starting 1 day after inoculation) inhibited solid tumor development in mice transplanted with Sarcoma 180 cells. The inhibition rates were 28.7 and 52.3% for piplartine and 55.1 and 56.8% for piperine, after 7 days of treatment, at the lower and higher doses, respectively. The antitumor activity of piplartine was related to inhibition of the tumor proliferation rate, as observed by reduction of Ki67 staining, a nuclear antigen associated with G1, S, G2, and M cell cycle phases, in tumors from treated animals. However, piperine did not inhibit cell proliferation as observed in Ki67 immunohistochemical analysis. Histopathological analysis of liver and kidney showed that both organs were reversibly affected by piplartine and piperine treatment, but in a different way. Piperine was more toxic to the liver, leading to ballooning degeneration of hepatocytes, accompanied by microvesicular steatosis in some areas, than piplartine which, in turn, was more toxic to the kidney, leading to discrete hydropic changes of the proximal tubular and glomerular epithelium and tubular hemorrhage in treated animals.


Subject(s)
Alkaloids/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Benzodioxoles/therapeutic use , Piper/chemistry , Piperidines/therapeutic use , Piperidones/therapeutic use , Polyunsaturated Alkamides/therapeutic use , Sarcoma 180/drug therapy , Alkaloids/isolation & purification , Alkaloids/toxicity , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/toxicity , Benzodioxoles/isolation & purification , Benzodioxoles/toxicity , Cell Proliferation/drug effects , Disease Models, Animal , Female , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Mice , Neoplasm Transplantation , Piperidines/isolation & purification , Piperidines/toxicity , Piperidones/isolation & purification , Piperidones/toxicity , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Plant Roots/chemistry , Polyunsaturated Alkamides/isolation & purification , Polyunsaturated Alkamides/toxicity , Sarcoma 180/pathology , Spleen/drug effects , Spleen/pathology
7.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;39(6): 801-807, June 2006. ilus, tab
Article in English | LILACS | ID: lil-428281

ABSTRACT

Piplartine {5,6-dihydro-1-[1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)pyridinone} and piperine {1-5-(1,3)-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]piperidine} are alkaloid amides isolated from Piper. Both have been reported to show cytotoxic activity towards several tumor cell lines. In the present study, the in vivo antitumor activity of these compounds was evaluated in 60 female Swiss mice (N = 10 per group) transplanted with Sarcoma 180. Histopathological and morphological analyses of the tumor and the organs, including liver, spleen, and kidney, were performed in order to evaluate the toxicological aspects of the treatment with these amides. Administration of piplartine or piperine (50 or 100 mg kg-1 day-1 intraperitoneally for 7 days starting 1 day after inoculation) inhibited solid tumor development in mice transplanted with Sarcoma 180 cells. The inhibition rates were 28.7 and 52.3 percent for piplartine and 55.1 and 56.8 percent for piperine, after 7 days of treatment, at the lower and higher doses, respectively. The antitumor activity of piplartine was related to inhibition of the tumor proliferation rate, as observed by reduction of Ki67 staining, a nuclear antigen associated with G1, S, G2, and M cell cycle phases, in tumors from treated animals. However, piperine did not inhibit cell proliferation as observed in Ki67 immunohistochemical analysis. Histopathological analysis of liver and kidney showed that both organs were reversibly affected by piplartine and piperine treatment, but in a different way. Piperine was more toxic to the liver, leading to ballooning degeneration of hepatocytes, accompanied by microvesicular steatosis in some areas, than piplartine which, in turn, was more toxic to the kidney, leading to discrete hydropic changes of the proximal tubular and glomerular epithelium and tubular hemorrhage in treated animals.


Subject(s)
Animals , Female , Mice , Alkaloids/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Benzodioxoles/therapeutic use , Piper/chemistry , Piperidines/therapeutic use , Piperidones/therapeutic use , Polyunsaturated Alkamides/therapeutic use , /drug therapy , Alkaloids/isolation & purification , Alkaloids/toxicity , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/toxicity , Benzodioxoles/isolation & purification , Benzodioxoles/toxicity , Cell Proliferation/drug effects , Disease Models, Animal , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Neoplasm Transplantation , Piperidines/isolation & purification , Piperidines/toxicity , Piperidones/isolation & purification , Piperidones/toxicity , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Plant Roots/chemistry , Polyunsaturated Alkamides/isolation & purification , Polyunsaturated Alkamides/toxicity , /pathology , Spleen/drug effects , Spleen/pathology
8.
Food Chem Toxicol ; 44(3): 388-92, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16182426

ABSTRACT

Copaiba oil extracted from the Amazon traditional medicinal plant Copaifera langsdorffii is rich in kaurenoic acid (ent-kaur-16-en-19-oic acid), a diterpene that has been shown to exert anti-inflammatory, hypotensive, and diuretic effects in vivo and antimicrobial, smooth muscle relaxant and cytotoxic actions in vitro. This study evaluated its potential genotoxicity against Chinese hamster lung fibroblast (V79) cells in vitro, using the Comet and the micronucleus assays. Kaurenoic acid was tested at concentrations of 2.5, 5,10, 30 and 60 microg/mL. The positive control was the methylmethanesulfonate (MMS). The duration of the treatment of V79 cells with these agents was 3h. The results showed that unlike MMS, kaurenoic acid (2.5, 5, and 10 microg/mL) failed to induce significantly elevated cell DNA damage or the micronucleus frequencies in the studied tests. However, exposure of V79 cells to higher concentrations of kaurenoic acid (30 and 60 microg/mL) caused significant increases in cell damage index and frequency. The data obtained provide support to the view that the diterpene kaurenoic acid induces genotoxicity.


Subject(s)
Antineoplastic Agents, Alkylating/toxicity , DNA Damage/drug effects , Diterpenes/toxicity , Fabaceae , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Comet Assay , Cricetinae , Cricetulus , Diterpenes/therapeutic use , Dose-Response Relationship, Drug , Fabaceae/chemistry , Lung Neoplasms/drug therapy , Methyl Methanesulfonate/toxicity , Micronucleus Tests , Mutagenicity Tests , Phytotherapy , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Tumor Cells, Cultured
9.
Toxicon ; 40(8): 1231-234, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12165328

ABSTRACT

In this work, we studied the effects of kaurenoic acid, a diterpene isolated from the oleo-resin of Copaifera langsdorffii in developing sea urchin (Lytechinus variegatus) embryos, on tumor cell growth in microculture tetrazolium (MTT) test and on mouse and human erythrocytes in hemolysis assay. Continuous exposure of embryos to kaurenoic acid starting immediately after fertilization inhibited the first cleavage (IC(50): 84.2 microM) and progressively induced embryo destruction (IC(50): 44.7 microM and < 10 microM for blastulae and larvae stages, respectively). In MTT assay, kaurenoic acid at a concentration of 78 microM produced growth inhibition of CEM leukemic cells by 95%, MCF-7 breast and HCT-8 colon cancer cells by 45% each. Further, kaurenoic acid induced a dose-dependent hemolysis of mouse and human erythrocytes with an EC(50) of 74.0 and 56.4 microM, respectively. The destruction of sea urchin embryos, the inhibition of tumor cell growth and the hemolysis of mouse and human erythrocytes indicate the potential cytotoxicity of kaurenoic acid.


Subject(s)
Cytotoxins/toxicity , Diterpenes/toxicity , Plants, Medicinal/chemistry , Resins, Plant/chemistry , Sea Urchins/physiology , Teratogens/toxicity , Animals , Cell Survival/drug effects , Cytotoxins/chemistry , Diterpenes/chemistry , Embryo, Nonmammalian , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Mice , Teratogens/chemistry , Tumor Cells, Cultured
10.
Braz J Med Biol Res ; 35(8): 927-30, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12185385

ABSTRACT

Auxemma oncocalyx Taub. belongs to the Boraginaceae family and is native to the Brazilian northeast where it is known as "pau-branco". We investigated the ability of the water soluble fraction isolated from the heartwood of A. oncocalyx to inhibit sea urchin egg development. This fraction contains about 80% oncocalyxone A (quinone fraction), a compound known to possess strong cytotoxic and antitumor activities. In fact, the quinone fraction inhibited cleavage in a dose-dependent manner [IC50 of 18.4 (12.4-27.2) microg/ml, N = 6], and destroyed the embryos in the blastula stage [IC50 of 16.2 (13.7-19.2) microg/ml, N = 6]. We suggest that this activity is due to the presence of oncocalyxone A. In fact, these quinones present in A. oncocalyx extract have strong toxicity related to their antimitotic activity.


Subject(s)
Anthraquinones/toxicity , Boraginaceae/chemistry , Ovum/drug effects , Quinones/toxicity , Animals , Anthraquinones/isolation & purification , Antineoplastic Agents/toxicity , DNA Damage , Plant Extracts/toxicity , Quinones/isolation & purification , Sea Urchins
11.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;35(8): 927-930, Aug. 2002. ilus, graf
Article in English | LILACS | ID: lil-325539

ABSTRACT

Auxemma oncocalyx Taub. belongs to the Boraginaceae family and is native to the Brazilian northeast where it is known as "pau-branco". We investigated the ability of the water soluble fraction isolated from the heartwood of A. oncocalyx to inhibit sea urchin egg development. This fraction contains about 80 percent oncocalyxone A (quinone fraction), a compound known to possess strong cytotoxic and antitumor activities. In fact, the quinone fraction inhibited cleavage in a dose-dependent manner [IC50 of 18.4 (12.4-27.2) æg/ml, N = 6], and destroyed the embryos in the blastula stage [IC50 of 16.2 (13.7-19.2) æg/ml, N = 6]. We suggest that this activity is due to the presence of oncocalyxone A. In fact, these quinones present in A. oncocalyx extract have strong toxicity related to their antimitotic activity


Subject(s)
Animals , Anthraquinones , Boraginaceae , Ovum , Plant Extracts , Quinones , Anthraquinones , Antineoplastic Agents , DNA Damage , Quinones , Sea Urchins
SELECTION OF CITATIONS
SEARCH DETAIL