Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Microbiome ; 10(1): 47, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35272713

ABSTRACT

BACKGROUND: The gut microbiota can affect neurologic disease by shaping microglia, the primary immune cell in the central nervous system (CNS). While antibiotics improve models of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and the C9orf72 model of amyotrophic lateral sclerosis (ALS), antibiotics worsen disease progression the in SOD1G93A model of ALS. In ALS, microglia transition from a homeostatic to a neurodegenerative (MGnD) phenotype and contribute to disease pathogenesis, but whether this switch can be affected by the microbiota has not been investigated. RESULTS: In this short report, we found that a low-dose antibiotic treatment worsened motor function and decreased survival in the SOD1 mice, which is consistent with studies using high-dose antibiotics. We also found that co-housing SOD1 mice with wildtype mice had no effect on disease progression. We investigated changes in the microbiome and found that antibiotics reduced Akkermansia and butyrate-producing bacteria, which may be beneficial in ALS, and cohousing had little effect on the microbiome. To investigate changes in CNS resident immune cells, we sorted spinal cord microglia and found that antibiotics downregulated homeostatic genes and increased neurodegenerative disease genes in SOD1 mice. Furthermore, antibiotic-induced changes in microglia preceded changes in motor function, suggesting that this may be contributing to disease progression. CONCLUSIONS: Our findings suggest that the microbiota play a protective role in the SOD1 model of ALS by restraining MGnD microglia, which is opposite to other neurologic disease models, and sheds new light on the importance of disease-specific interactions between microbiota and microglia. Video abstract.


Subject(s)
Amyotrophic Lateral Sclerosis , Microbiota , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Anti-Bacterial Agents/pharmacology , Disease Models, Animal , Disease Progression , Mice , Mice, Transgenic , Microglia/pathology , Neurodegenerative Diseases/pathology , Superoxide Dismutase/genetics , Superoxide Dismutase/pharmacology , Superoxide Dismutase/therapeutic use , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/pharmacology , Superoxide Dismutase-1/therapeutic use
2.
Cell Host Microbe ; 26(6): 779-794.e8, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31784260

ABSTRACT

Fecal transfer from healthy donors is being explored as a microbiome modality. MicroRNAs (miRNAs) have been found to affect the microbiome. Multiple sclerosis (MS) patients have been shown to have an altered gut microbiome. Here, we unexpectedly found that transfer of feces harvested at peak disease from the experimental autoimmune encephalomyelitis (EAE) model of MS ameliorates disease in recipients in a miRNA-dependent manner. Specifically, we show that miR-30d is enriched in the feces of peak EAE and untreated MS patients. Synthetic miR-30d given orally ameliorates EAE through expansion of regulatory T cells (Tregs). Mechanistically, miR-30d regulates the expression of a lactase in Akkermansia muciniphila, which increases Akkermansia abundance in the gut. The expanded Akkermansia in turn increases Tregs to suppress EAE symptoms. Our findings report the mechanistic underpinnings of a miRNA-microbiome axis and suggest that the feces of diseased subjects might be enriched with miRNAs with therapeutic properties.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Fecal Microbiota Transplantation , MicroRNAs/therapeutic use , Multiple Sclerosis/drug therapy , Verrucomicrobia , Administration, Oral , Akkermansia , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Feces , Gastrointestinal Microbiome/immunology , Host Microbial Interactions , Humans , Lactase/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , T-Lymphocytes, Regulatory/metabolism , Verrucomicrobia/growth & development , Verrucomicrobia/immunology , Verrucomicrobia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL