ABSTRACT
Various diseases have been linked to the human microbiota, but the underlying molecular mechanisms of the microbiota in disease pathogenesis are often poorly understood. Using acne as a disease model, we aimed to understand the molecular response of the skin microbiota to host metabolite signaling in disease pathogenesis. Metatranscriptomic analysis revealed that the transcriptional profiles of the skin microbiota separated acne patients from healthy individuals. The vitamin B12 biosynthesis pathway in the skin bacterium Propionibacterium acnes was significantly down-regulated in acne patients. We hypothesized that host vitamin B12 modulates the activities of the skin microbiota and contributes to acne pathogenesis. To test this hypothesis, we analyzed the skin microbiota in healthy subjects supplemented with vitamin B12. We found that the supplementation repressed the expression of vitamin B12 biosynthesis genes in P. acnes and altered the transcriptome of the skin microbiota. One of the 10 subjects studied developed acne 1 week after vitamin B12 supplementation. To further understand the molecular mechanism, we revealed that vitamin B12 supplementation in P. acnes cultures promoted the production of porphyrins, which have been shown to induce inflammation in acne. Our findings suggest a new bacterial pathogenesis pathway in acne and provide one molecular explanation for the long-standing clinical observation that vitamin B12 supplementation leads to acne development in a subset of individuals. Our study discovered that vitamin B12, an essential nutrient in humans, modulates the transcriptional activities of skin bacteria, and provided evidence that metabolite-mediated interactions between the host and the skin microbiota play essential roles in disease development.
Subject(s)
Acne Vulgaris/microbiology , Acne Vulgaris/pathology , Microbiota/genetics , Skin/microbiology , Transcriptome/genetics , Vitamin B 12/pharmacology , Adult , Case-Control Studies , Dietary Supplements , Down-Regulation/drug effects , Female , Gene Expression Profiling , Humans , Male , Metabolic Networks and Pathways/drug effects , Microbiota/drug effects , Models, Biological , Operon/genetics , Porphyrins/biosynthesis , Propionibacterium acnes/drug effects , Propionibacterium acnes/genetics , Transcription, Genetic/drug effects , Transcriptome/drug effects , Vitamin B 12/biosynthesis , Young AdultABSTRACT
Corticotropin-releasing factor (CRF) signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE)-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse) injected peripherally once a day for 5 days in 4-9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF2 receptor antagonist, astressin2-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress.