Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Biomed Pharmacother ; 106: 1317-1324, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30119202

ABSTRACT

BACKGROUND: This study aimed to investigate and characterize the anti-inflammatory and anti-hypernociceptive effects of the total polysaccharides of X. americana (TPL-Xa) bark in a mouse model of acute pancreatitis-induced by caerulein and the potential involvement of cannabinoid receptors. METHODS: TPL-Xa was characterized by1H and 13C NMR spectroscopy. Animals received TPL-Xa (10 mg/kg, i.v.) 30 min before and after caerulein (50 µg/kg, 10×, i.p.) administration. To evaluate the involvement of cannabinoid receptors, AM281 (3 mg/kg, s.c.) and AM630 (1 mg/kg, s.c.) were administered 30 min before TPL-Xa. Plasma levels of amylase and lipase, pancreatic myeloperoxidase (MPO), histology, visceral hypernociception and motor coordination were evaluated 11 and 24 h after acute pancreatitis (AP) induction. RESULTS: TPL-Xa, containing a heteropolysaccharide composed of glucose, galactose, arabinose, rhamnose, fucose and galacturonic acid, reduced amylase and lipase levels, MPO activity, acinar cell necrosis, edema and neutrophil infiltration. TPL-Xa increased the threshold of visceral hypernociception, an effect reversed by AM630, an antagonist of cannabinoid receptor type 2 (CB2). In addition, TPL-Xa did not alter the animals' motor coordination. CONCLUSIONS: TPL-Xa contains heteropolysaccharides that inhibit inflammation and hypernociception in the experimental model of caerulein-induced AP, by a mechanism involving type CB2 receptors.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Ceruletide , Nociceptive Pain/prevention & control , Olacaceae , Pancreas/drug effects , Pancreatitis/prevention & control , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Receptor, Cannabinoid, CB2/agonists , Analgesics/isolation & purification , Animals , Anti-Inflammatory Agents/isolation & purification , Cannabinoid Receptor Agonists/isolation & purification , Carbon-13 Magnetic Resonance Spectroscopy , Disease Models, Animal , Enzymes/blood , Inflammation Mediators/metabolism , Male , Mice , Motor Activity/drug effects , Nociceptive Pain/chemically induced , Nociceptive Pain/metabolism , Olacaceae/chemistry , Pain Threshold/drug effects , Pancreas/enzymology , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/metabolism , Pancreatitis/pathology , Phytotherapy , Plant Extracts/isolation & purification , Plants, Medicinal , Polysaccharides/isolation & purification , Proton Magnetic Resonance Spectroscopy , Receptor, Cannabinoid, CB2/metabolism , Signal Transduction/drug effects , Time Factors
2.
J Pharm Pharmacol ; 64(12): 1777-84, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23146041

ABSTRACT

OBJECTIVES: We evaluated the relaxant activity of the essential oil of Mentha pulegium L. (EOMP) and pulegone in rat isolated tracheal and bladder smooth muscles. METHODS: ISOMETRIC contractions of isolated tracheal and bladder strips from male Wistar rats were induced by KCl (K60; 60 mm) or acetylcholine (ACh; 10 µm). EOMP and its majory compound pulegone were incubated, after contracting agent, with the tissues in cumulating concentrations. KEY FINDINGS: EOMP (3-300 µg/ml) inhibited the contractions induced by ACh and K60 in both tissues, but was more effective against the contractions induced by K60 in trachea (IC50 = 40.47 ± 3.27 µg/ml) compared with ACh. Its relaxant action rules out ganglia and NO participation. Pulegone (10(-7) to 10(-3 ) m) inhibited the contractions induced by ACh and K60 in both tissues. EOMP concentration-dependently inhibited the contractions evoked by addition of CaCl(2) in depolarised trachea, suggesting inhibition of extracellular calcium entry. CONCLUSIONS: These findings suggests that EOMP induced relaxant responses in pre-contracted smooth muscles of rat trachea and bladder, which are likely to be mediated via inhibition of calcium entry, mainly by its major compound, pulegone. These effects are coherent with the popular use of EOMP as an antispasmodic agent.


Subject(s)
Mentha pulegium/chemistry , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Oils, Volatile/pharmacology , Parasympatholytics/pharmacology , Trachea/drug effects , Urinary Bladder/drug effects , Acetylcholine , Animals , Calcium Chloride/metabolism , Cyclohexane Monoterpenes , Dose-Response Relationship, Drug , Inhibitory Concentration 50 , Male , Monoterpenes/pharmacology , Muscle, Smooth/physiology , Plant Extracts/pharmacology , Potassium Chloride , Rats , Rats, Wistar , Trachea/physiology , Urinary Bladder/physiology
3.
Biochem Biophys Res Commun ; 350(4): 1050-5, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17045568

ABSTRACT

This paper describes the purification and characterization of a new N-acetyl-d-glucosamine-specific lectin from Araucaria angustifolia (AaL) seeds (Araucariaceae) and its anti-inflammatory and antibacterial activities. AaL was purified using a combination of affinity chromatography on a chitin column and ion exchange chromatography on Sephacel-DEAE. The pure protein has 8.0kDa (SDS-PAGE) and specifically agglutinates rabbit erythrocytes, effect that was independent of the presence of divalent cations and was inhibited after incubation with glucose and N-acetyl-d-glucosamine. AaL showed antibacterial activity against Gram-negative and Gram-positive strains, shown by scanning electron microscopy. AaL, intravenously injected into rats, showed anti-inflammatory effect, via carbohydrate site interaction, in the models of paw edema and peritonitis. This lectin can be used as a tool for studying bacterial infections and inflammatory processes.


Subject(s)
Bacteria/cytology , Bacteria/drug effects , Cycadopsida/metabolism , Inflammation/drug therapy , Plant Lectins/administration & dosage , Seeds/chemistry , Animals , Dose-Response Relationship, Drug , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Plant Lectins/isolation & purification , Rats
SELECTION OF CITATIONS
SEARCH DETAIL