Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Immun Inflamm Dis ; 9(3): 984-990, 2021 09.
Article in English | MEDLINE | ID: mdl-34034363

ABSTRACT

INTRODUCTION: Alpha-gal syndrome (AGS) is characterized by delayed hypersensitivity to non-primate mammalian meat in people having specific immunoglobulin E (sIgE) to the oligosaccharide galactose-alpha-1,3-galactose. AGS has been linked to tick bites from Amblyomma americanum (Aa) in the U.S. A small animal model of meat allergy is needed to study the mechanism of alpha-gal sensitization, the effector phase leading to delayed allergic responses and potential therapeutics to treat AGS. METHODS: Eight- to ten-weeks old mice with a targeted inactivation of alpha-1,3-galactosyltransferase (AGKO) were injected intradermally with 50 µg of Aa tick salivary gland extract (TSGE) on days 0, 7, 21, 28, 42, and 49. Total IgE and alpha-gal sIgE were quantitated on Day 56 by enzyme-linked immunosorbent assay. Mice were challenged orally with 400 mg of cooked pork kidney homogenate or pork fat. Reaction severity was assessed by measuring a drop in core body temperature and scoring allergic signs. RESULTS: Compared to control animals, mice treated with TSGE had 190-fold higher total IgE on Day 56 (0.60 ± 0.12 ng/ml vs. 113.2 ± 24.77 ng/ml; p < 0.001). Alpha-gal sIgE was also produced in AGKO mice following TSGE sensitization (undetected vs. 158.4 ± 72.43 pg/ml). Further, sensitized mice displayed moderate clinical allergic signs along with a drop in core body temperature of ≥2°C as an objective measure of a systemic allergic reaction. Interestingly, female mice had higher total IgE responses to TSGE treatment but male mice had larger declines in mean body temperature. CONCLUSION: TSGE-sensitized AGKO mice generate sIgE to alpha-gal and demonstrate characteristic allergic responses to pork fat and pork kidney. In keeping with the AGS responses documented in humans, mice reacted more rapidly to organ meat than to high fat pork challenge. This mouse model establishes the central role of tick bites in the development of AGS and provides a small animal model to mechanistically study mammalian meat allergy.


Subject(s)
Food Hypersensitivity , Ticks , Animals , Female , Male , Mice , Plant Extracts , Salivary Glands
2.
Insect Biochem Mol Biol ; 88: 37-47, 2017 09.
Article in English | MEDLINE | ID: mdl-28739494

ABSTRACT

Selenium, a vital trace element, is incorporated into selenoproteins to produce selenocysteine. Our previous studies have revealed an adaptive co-evolutionary process that has enabled the spotted fever-causing tick-borne pathogen Rickettsia parkeri to survive by manipulating an antioxidant defense system associated with selenium, which includes a full set of selenoproteins and other antioxidants in ticks. Here, we conducted a systemic investigation of SECIS binding protein 2 (SBP2) and putative selenoprotein P (SELENOP) by transcript silencing in adult female Gulf-coast ticks (Amblyomma maculatum). Knockdown of the SBP2 and SELENOP genes depleted the respective transcript levels of these tick selenogenes, and caused differential regulation of other antioxidants. Importantly, the selenium level in the immature and mature tick stages increased significantly after a blood meal, but the selenium level decreased in ticks after the SBP2 and SELENOP knockdowns. Moreover, the SBP2 knockdown significantly impaired both transovarial transmission of R. parkeri to tick eggs and egg hatching. Overall, our data offer new insight into the relationship between the SBP2 selenoprotein synthesis gene and the putative tick SELENOP gene. It also augments our understanding of selenoprotein synthesis, selenium maintenance and utilization, and bacterial colonization of a tick vector.


Subject(s)
Arthropod Proteins/physiology , Arthropod Vectors/physiology , Selenium/metabolism , Selenoproteins/physiology , Ticks/physiology , Animals , Arthropod Vectors/microbiology , Female , Fertility , Gene Expression , Humans , Mice , Microbiota , Ovary/microbiology , Oxidative Stress , RNA Interference , Rats , Rickettsia/physiology , Ticks/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL