Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Circ Arrhythm Electrophysiol ; 11(8): e005913, 2018 08.
Article in English | MEDLINE | ID: mdl-30354313

ABSTRACT

Background Papillary muscles are an important source of ventricular tachycardia (VT). Yet little is known about the role of the right ventricular (RV) endocavity structure, the moderator band (MB). The aim of this study was to determine the characteristics of the MB that may predispose to arrhythmia substrates. Methods Ventricular wedge preparations with intact MBs were studied from humans (n=2) and sheep (n=15; 40-50 kg). RV endocardium was optically mapped, and electrical recordings were measured along the MB and septum. S1S2 pacing of the RV free wall, MB, or combined S1-RV S2-MB sites were assessed. Human (n=2) and sheep (n=4) MB tissue constituents were assessed histologically. Results The MB structure was remarkably organized as 2 excitable, yet uncoupled compartments of myocardium and Purkinje. In humans, action potential duration heterogeneity between MB and RV myocardium was found (324.6±12.0 versus 364.0±8.4 ms; P<0.0001). S1S2-MB pacing induced unidirectional propagation via MB myocardium, permitting sustained macroreentrant VT. In sheep, the incidence of VT for RV, MB, and S1-RV S2-MB pacing was 1.3%, 5.1%, and 10.3%. Severing the MB led to VT termination, confirming a primary arrhythmic role. Inducible preparations had shorter action potential duration in the MB than RV (259.3±45.2 versus 300.7±38.5 ms; P<0.05), whereas noninducible preparations showed no difference (312.0±30.3 versus 310.0±24.6 ms, respectively). Conclusions The MB presents anatomic and electrical compartmentalization between myocardium and Purkinje fibers, providing a substrate for macroreentry. The vulnerability to sustain VT via this mechanism is dependent on MB structure and action potential duration gradients between the RV free wall and MB.


Subject(s)
Action Potentials , Heart Rate , Papillary Muscles/physiopathology , Tachycardia, Ventricular/etiology , Animals , Cardiac Pacing, Artificial , Computer Simulation , Electrophysiologic Techniques, Cardiac , Humans , In Vitro Techniques , Models, Cardiovascular , Myocardium/pathology , Papillary Muscles/pathology , Purkinje Fibers/physiopathology , Sheep, Domestic , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/physiopathology , Time Factors , Voltage-Sensitive Dye Imaging
2.
Science ; 343(6172): 772-6, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24531969

ABSTRACT

Crude oil is known to disrupt cardiac function in fish embryos. Large oil spills, such as the Deepwater Horizon (DWH) disaster that occurred in 2010 in the Gulf of Mexico, could severely affect fish at impacted spawning sites. The physiological mechanisms underlying such potential cardiotoxic effects remain unclear. Here, we show that crude oil samples collected from the DWH spill prolonged the action potential of isolated cardiomyocytes from juvenile bluefin and yellowfin tunas, through the blocking of the delayed rectifier potassium current (I(Kr)). Crude oil exposure also decreased calcium current (I(Ca)) and calcium cycling, which disrupted excitation-contraction coupling in cardiomyocytes. Our findings demonstrate a cardiotoxic mechanism by which crude oil affects the regulation of cellular excitability, with implications for life-threatening arrhythmias in vertebrates.


Subject(s)
Arrhythmias, Cardiac/veterinary , Heart Ventricles/drug effects , Myocardial Contraction/drug effects , Petroleum Pollution , Petroleum/toxicity , Tuna/physiology , Animals , Arrhythmias, Cardiac/chemically induced , Calcium/metabolism , Delayed Rectifier Potassium Channels/antagonists & inhibitors , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Ventricular Function/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL