Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Analyst ; 138(22): 6737-41, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24045409

ABSTRACT

Natural occurring organic compounds from food, natural organic matter, as well as metabolic products have received intense attention in current chemical and biological studies. Examination of unknown compounds in complex sample matrices is hampered by the limited choices for data readout and molecular elucidation. Herein, we report a generic method of hydrophilic interaction chromatography (HILIC) coupled with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid characterization of ingredients in pharmaceutical compounds, tea, and coffee. The analytes were first fractionated using a cationic HILIC column prior to MALDI-MS analyses. It was found that the retention times of a compound arising from different samples were consistent under the same conditions. Accordingly, molecules can be readily characterized by both the mass and chromatographic retention time. The retention behaviors of acidic and basic compounds on the cationic HILIC column were found to be significantly influenced by the pH of mobile phases, whereas neutral compounds depicted a constant retention time at different pH. The general HILIC-MALDI-MS method is feasible for fast screening of naturally occurring organic compounds. A series of homologs can be determined if they have the same retention behavior. Their structural features can be elucidated by considering their mass differences and hydrophilic properties as determined by HILIC chromatogram.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Coffee/chemistry , Organic Chemicals/analysis , Pharmaceutical Preparations/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tea/chemistry , Hydrophobic and Hydrophilic Interactions
2.
Environ Sci Technol ; 47(6): 2784-91, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23439015

ABSTRACT

A simple, nonhazardous, efficient and low energy-consuming process is desirable to generate powerful radicals from peroxymonosulfate (PMS) for recalcitrant pollutant removal. In this work, the production of radical species from PMS induced by a magnetic CuFe(2)O(4) spinel was studied. Iopromide, a recalcitrant model pollutant, was used to investigate the efficiency of this process. CuFe(2)O(4) showed higher activity and 30 times lower Cu(2+) leaching (1.5 µg L(-1) per 100 mg L(-1)) than a well-crystallized CuO at the same dosage. CuFe(2)O(4) maintained its activity and crystallinity during repeated batch experiments. In comparison, the activity of CuO declined significantly, which was ascribed to the deterioration in its degree of crystallinity. The efficiency of the PMS/CuFe(2)O(4) was highest at neutral pH and decreased at acidic and alkaline pHs. Sulfate radical was the primary radical species responsible for the iopromide degradation. On the basis of the stoichiometry of oxalate degradation in the PMS/CuFe(2)O(4), the radical production yield from PMS was determined to be near 1 mol/mol. The PMS decomposition involved an inner-sphere complexation with the oxide's surface Cu(II) sites. In situ characterization of the oxide surface with ATR-FTIR and Raman during the PMS decomposition suggested that surface Cu(II)-Cu(III)-Cu(II) redox cycle was responsible for the efficient sulfate radical generation from PMS.


Subject(s)
Copper/chemistry , Ferrous Compounds/chemistry , Peroxides/isolation & purification , Sulfates/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Aluminum Oxide , Hydrogen-Ion Concentration , Magnesium Oxide , Magnetics , Oxidation-Reduction , Peroxides/chemistry , Water/analysis , Water Pollutants, Chemical/chemistry
3.
Water Res ; 46(3): 731-40, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22154285

ABSTRACT

Adsorption of purified Aldrich humic acid (PAHA) onto α-Al(2)O(3) is studied by batch experiments at different pH, ionic strength and coverage ratios R (mg of PAHA by m(2) of mineral surface). After equilibration, samples are centrifuged and the concentration of PAHA in the supernatants is measured. The amount of adsorbed PAHA per m(2) of mineral surface is decreasing with increasing pH. At constant pH value, the amount of adsorbed PAHA increases with initial PAHA concentration until a pH-dependent constant value is reached. UV/Visible specific parameters such as specific absorbance SUVA(254), ratio of absorbance values E(2)/E(3) and width of the electron-transfer absorbance band Δ(ET) are calculated for supernatant PAHA fractions of adsorption experiments at pH 6.8, to have an insight on the evolution of PAHA characteristics with varying coverage ratio. No modification is observed compared to original compound for R ≥ 20 mg(PAHA)/g(α)(-)(A)12(O)3. Below this ratio, aromaticity decreases with initial PAHA concentration. Size-exclusion chromatography - organic carbon detection measurements on these supernatants also show a preferential adsorption of more aromatic and higher-sized fractions. Spectrophotometric titrations were done to estimate changes of reactivity of supernatants from adsorption experiments made at pH ≈6.8 and different PAHA concentrations. Evolutions of UV/Visible spectra with varying pH were treated to obtain titration curves that are interpreted within the NICA-Donnan framework. Protonation parameters of non-sorbed PAHA fractions are compared to those obtained for the PAHA before contact with the oxide. The amount of low proton-affinity type of sites and the value of their median affinity constant decrease after adsorption. From PAHA concentration in the supernatant and mass balance calculations, "titration curves" are experimentally proposed for the adsorbed fractions for the first time. These changes in reactivity to our opinion could explain the difficulty to model the behavior of ternary systems composed of pollutants/HS/mineral since additivity is not respected.


Subject(s)
Aluminum Oxide/chemistry , Humic Substances/analysis , Adsorption , Chromatography, Gel , Hydrogen-Ion Concentration , Models, Chemical , Osmolar Concentration , Solutions , Spectrophotometry, Ultraviolet , Surface Properties , Titrimetry
SELECTION OF CITATIONS
SEARCH DETAIL