Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nutrients ; 14(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145170

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD)-related liver fibrosis results in the encapsulation of injured liver parenchyma by a collagenous scar mainly imputable to hepatic stellate cells' activation. Approved pharmacological treatments against NAFLD-related fibrosis are still lacking, but natural compounds such as hydroxytyrosol (HXT) and vitamin E (VitE), are emerging as promising therapeutic opportunities. In this study, the potential anti-fibrotic effect of HXT + VitE combination therapy was investigated in vitro and in vivo. In particular, tumor growth factor (TGF)-ß-activated LX-2 cells as an in vitro model, and carbon tetrachloride plus a Western diet as a mice model were employed. The effect of HXT + VitE on fibrosis was also investigated in children with biopsy-proven NAFLD. Our results demonstrated that HXT + VitE caused a reduction of proliferation, migration, contractility, and expression of pro-fibrogenic genes in TGF-ß-activated LX-2 cells. HXT + VitE treatment also antagonized TGF-ß-dependent upregulation of pro-oxidant NOX2 by interfering with nuclear translocation/activation of SMAD2/3 transcription factors. The mouse model of NAFLD-related fibrosis treated with HXT + VitE showed a marked reduction of fibrosis pattern by histology and gene expression. Accordingly, in children with NAFLD, HXT + VitE treatment caused a decrease of circulating levels of PIIINP and NOX2 that was supported over time. Our study suggests that HXT + VitE supplementation may improve NAFLD-related fibrosis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Carbon Tetrachloride , Fibrosis , Liver/metabolism , Liver Cirrhosis/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Phenylethyl Alcohol/analogs & derivatives , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Vitamin E/therapeutic use
2.
J Exp Clin Cancer Res ; 40(1): 364, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34784956

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR) is one of the most effective single-drug systemic therapy against advanced HCC, but the identification of novel combination regimens for a continued improvement in overall survival is a big challenge. Recent studies highlighted the crucial role of focal adhesion kinase (FAK) in HCC growth. The aim of this study was to investigate the antitumor effects of three different FAK inhibitors (FAKi), alone or in combination with SOR, using in vitro and in vivo models of HCC. METHODS: The effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. Among them TAE226, emerging as the most effective FAKi, was tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods. RESULTS: TAE226 was the more effective FAKi to be combined with SOR against HCC. Combined TAE226 and SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of FAK nuclear interactome. We characterized a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation caused a decrease in the nuclear amount of HDAC1/2 and a consequent increase of the histone H3 lysine 27 acetylation, thus counteracting histone H3 lysine 27 trimethylation. CONCLUSIONS: Altogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduces HCC growth in vitro and in vivo. Also, our data highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising targets for HCC therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Epigenesis, Genetic/genetics , Liver Neoplasms/drug therapy , Morpholines/therapeutic use , Sorafenib/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , Male , Mice , Mice, Inbred NOD , Morpholines/pharmacology , Sorafenib/pharmacology
3.
Sci Rep ; 9(1): 2045, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30765737

ABSTRACT

Two recent randomized controlled trials demonstrated improved radiographic, histological and hepatometabolic cues of non-alcoholic steatohepatitis (NASH) in pediatric patients treated with the ω-3 fatty acid docosahexaenoic acid (DHA) in combination with vitamin D (VD) or with choline (CHO) and vitamin E (VE), the DHA-VD and DHA-CHO-VE trials, respectively). In the present study we verified the nutritional compliance to these DHA-based multivitamin treatments; lipidomics biomarkers of the reported outcome on NASH indicators were also investigated. Samples were obtained from 30 biopsy-proven pediatric NASH patients of the DHA-CHO-VE trial randomized in multivitamin treatment group and placebo group (n = 15 each), and from 12 patients of the treatment group of the DHA-VD trial. All patients underwent 6-month therapy plus 6 months of follow-up. Plasma samples and clinical data were obtained at baseline and at the end of the study (12 months). Selected biomarkers included the free form of DHA and other ω-3 fatty acid arachidonic acid (AA), indices of the vitamin E status, and some hepatic metabolites of these lipids. Radiographic and histological improvements of treated patients were associated with increased concentrations of DHA, α-linolenic acid and α-tocopherol (i.e. VE), and with decreased AA that was also investigated in complex lipids by untargetd lipidomics. As a result a significantly lowered AA/DHA ratio was observed to represent the main indicator of the response to the DHA-based therapy. Furthermore, baseline levels of AA/DHA showed strong association with NAS and US improvement. A stable correction of DHA AA metabolism interaction is associated with the curative effect of this therapy and may represent a key nutritional endpoint in the clinical management of pediatric NASH.


Subject(s)
Docosahexaenoic Acids/metabolism , Non-alcoholic Fatty Liver Disease/diet therapy , Vitamins/therapeutic use , Adolescent , Arachidonic Acid/metabolism , Biomarkers/metabolism , Child , Choline/metabolism , Choline/therapeutic use , Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/blood , Fatty Acids, Omega-3/metabolism , Female , Humans , Lipid Metabolism , Lipidomics/methods , Liver/metabolism , Male , Non-alcoholic Fatty Liver Disease/metabolism , Vitamin D/metabolism , Vitamin D/therapeutic use , Vitamin E/metabolism , Vitamin E/therapeutic use , alpha-Linolenic Acid/metabolism
4.
Appl Physiol Nutr Metab ; 42(9): 948-954, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28511023

ABSTRACT

Nonalcoholic steatohepatitis (NASH), a progressive form of nonalcoholic fatty liver disease, is one of the most common hepatic diseases in children. We conducted a randomized controlled clinical trial on children with biopsy-proven NASH based on a combinatorial nutritional approach compared with placebo. Participants were assigned to lifestyle modification plus placebo or lifestyle modification plus a mix containing docosahexaenoic acid, choline, and vitamin E (DHA-CHO-VE). Forty children and adolescents participated in the entire trial. The primary outcome was the improvement of liver hyperechogenicity. Secondary outcomes included alterations of alanine aminotransferase (ALT) and other metabolic parameters. Furthermore, changes of serum bile acids (BA) and plasma fibroblast growth factor 19 (FGF19) levels were evaluated as inverse biomarkers of disease severity. At the end of the study, we observed a significant decrease in severe steatosis in the treatment group (50% to 5%, p = 0.001). Furthermore, although the anthropometric and biochemical measurements in the placebo and DHA-CHO-VE groups were comparable at baseline, at the end of the study ALT and fasting glucose levels improved only in the treatment group. Finally, we found that BA levels were not influenced whereas FGF19 levels were significantly increased by DHA-CHO-VE. The results suggest that a combination of DHA, VE, and CHO could improve steatosis and reduce ALT and glucose levels in children with NASH. However, further studies are needed to assess the impact of a DHA and VE combination on repair of liver damage in paediatric NASH.


Subject(s)
Child Nutritional Physiological Phenomena , Choline/therapeutic use , Dietary Supplements , Docosahexaenoic Acids/therapeutic use , Liver/physiopathology , Non-alcoholic Fatty Liver Disease/diet therapy , Vitamin E/therapeutic use , Adolescent , Biomarkers/blood , Biopsy , Child , Choline/adverse effects , Combined Modality Therapy/adverse effects , Dietary Supplements/adverse effects , Disease Progression , Docosahexaenoic Acids/adverse effects , Double-Blind Method , Exercise , Female , Follow-Up Studies , Healthy Lifestyle , Humans , Liver/pathology , Male , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/physiopathology , Severity of Illness Index , Vitamin E/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL