Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Chemosphere ; 352: 141350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309601

ABSTRACT

Excessive phosphorus (P) enters the water bodies via wastewater discharges or agricultural runoff, triggering serious environmental problems such as eutrophication. In contrast, P as an irreplaceable key resource, presents notable supply-demand contradictions due to ineffective recovery mechanisms. Hence, constructing a system that simultaneously reduce P contaminants and effective recycling has profound theoretical and practical implications. Metal element-based adsorbents, including metal (hydro) oxides, layered double hydroxides (LDHs) and metal-organic frameworks (MOFs), exhibit a significant chaperone effect stemming from strong orbital hybridization between their intrinsic Lewis acid sites and P (Lewis base). This review aims to parse the structure-effect relationship between metal element-based adsorbents and P, and explores how to optimize the P removal properties. Special emphasis is given to the formation of the metal-P chemical bond, which not only depends on the type of metal in the adsorbent but also closely relates to its surface activity and pore structure. Then, we delve into the intrinsic mechanisms behind these adsorbents' remarkable adsorption capacity and precise targeting. Finally, we offer an insightful discussion of the prospects and challenges of metal element-based adsorbents in terms of precise material control, large-scale production, P-directed adsorption and effective utilization.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Metals , Wastewater , Hydroxides , Adsorption
2.
J Hazard Mater ; 385: 121518, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31704121

ABSTRACT

Research interests have been recently thrust into the nonradical reactions in persulfate-based advanced oxidation processes (AOPs), whilst the underlying mechanism of the nonradical pathway remains ambiguous especially in metal-based AOPs systems. In this study, we investigated the reactivity of cuprous oxide (Cu2O) for activating peroxymonosulfate (PMS) to decompose diverse organic contaminants. Cu2O exhibited a strong catalytic dependence on the crystal morphology, and cubic Cu2O was more reactive than the octahedral and rhombic dodecahedral structures for catalytic degradation of bisphenol A with PMS. Chemical quenching tests, electron paramagnetic resonance (EPR), solvent exchange and selective oxidation experiment were corporately conducted to illustrate that Cu2O-catalyzed PMS did not produce free radicals or singlet oxygen. In contrast, a surface-confined metastable intermediate would be formed via outer-sphere interactions between PMS and Cu2O, which directly attacked the organic substrate. Such a reaction pathway is intrinsically distinct from the electron-shuttling regime in carbon (or noble metal)/persulfate systems via the conductive surface of the catalyst, and the outer-sphere interactions let the activated PMS demonstrate a higher oxidizing capacity toward organic contaminants. Therefore, this study dedicates to providing new insights into the copper-catalyzed AOPs and vital supplementary to the ongoing dialogue of the nonradical catalysis in persulfate-based oxidation.

3.
Chemosphere ; 165: 100-109, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27639465

ABSTRACT

Soil aquifer treatment (SAT) systems rely on extensive physical and biogeochemical processes in the vadose zone and aquifer for water quality improvement. In this study, the distribution, quantitative changes, as well as the speciation characteristics of heavy metals in different depth of soils of a two-year operated lab-scale SAT was explored. A majority of the heavy metals in the recharged secondary effluent were efficiently trapped by the steady-state operated SAT (removal efficiency ranged from 74.7% to 98.2%). Thus, significant accumulations of 31.7% for Cd, 15.9% for Cu, 15.3% for Zn and 8.6% for Cr were observed for the top soil after 730 d operation, leading to the concentration (in µg g-1) of those four heavy metals of the packed soil increased from 0.51, 46.7, 61.0 and 35.7 to 0.66, 54.2, 70.4 and 38.8, respectively. By contrast, the accumulation of Mn and Pb were quite low. The residual species were the predominant fraction of the six heavy metals (ranged for 59.8-82.4%), followed by oxidisable species. Although the Zn, Cr, Cd, Cu and Mn were efficiently bounded onto the oxide components within the soil, the percentage of the labile metal fractions (water-, acid-exchangeable and reducible metal fractions) exhibited a slight increasing after 2 Y operation. Significantly heavy metals accumulation and slightly decreasing of the proportion of the stable fractions indicated a potentially higher environmental hazard for those six heavy metals after long-term SAT operation (especially for Cu, Zn and Cd). Finally, a linear relationship between the accumulation rate of metal species and the variation of soil organic carbon concentration and water extractable organic carbon was demonstrated.


Subject(s)
Groundwater/chemistry , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Environmental Monitoring/methods
4.
J Environ Manage ; 156: 158-66, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25845997

ABSTRACT

Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly.


Subject(s)
Biodegradation, Environmental , Coal , Groundwater/chemistry , Organic Chemicals , Soil/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Recycling , Refuse Disposal/methods , Trihalomethanes
5.
Water Sci Technol ; 65(8): 1448-53, 2012.
Article in English | MEDLINE | ID: mdl-22466592

ABSTRACT

Performance of pre-treating algae-laden raw water by silver carp during a non-Microcystis-dominated period (period I) and a Microcystis-dominated period (period II) was investigated in terms of algae cell concentration, total phosphorus content, chlorophyll a and phytoplankton species structure. During period I the ineffective filter-feeding for small green algae resulted in the increase of small single algae, which led to the negative removal of chlorophyll a, and when the biomass was higher, the negative was more significant. However, due to the effective filter-feeding of silver carp for Microcystis flos-aquae, the average removal efficiency exceeded 50% at all stocking biomass levels (20-120 g/m(3)) used in experiments during period II. Total phosphorus removal efficiencies could exceed 50% at silver carp biomass stocking levels of 60-80 g/m(3) during both period I and period II. The experimental results indicated that silver carp stocking contributed to the removal of colony-forming cyanobacteria, but led to the increase of single-cell algae (mainly green algae and diatoms) during both period I and period II. The initial phytoplankton community structure and the control of nutrient level were important factors in the choice of silver carp stocking biomass when used to purify algae-loaded water.


Subject(s)
Carps , Eutrophication , Microcystis , Phytoplankton , Water Purification , Animals , Biomass , Fresh Water/analysis , Phosphorus/analysis , Water Quality
6.
J Environ Sci (China) ; 19(3): 290-4, 2007.
Article in English | MEDLINE | ID: mdl-17918589

ABSTRACT

Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. In this study, an ecological project was put forward for the excess propagation control of Cyclops by stocking the filter-feeding fishes such as silver carp and bighead carp under the condition of no extraneous nutrient feeding. The results of experiments with different stocking biomass showed that the propagation of Cyclops could be controlled effectively, and the water quality was improved simultaneously by impacting on nutriment level and plankton community structure at proper stocking density of 30 g/m3 of water. The growth of Cyclops may not be effectually controlled with lower biomass of fish (10 g), and the natural food chain relation may be destroyed for Cyclops dying out in water while the intense stocking of 120 g per cubic meter of water. In addition, the high predator pressure may accelerate supplemental rate of nutrients from bottom sediments to water body to add the content of total nitrogen and phosphorus in water.


Subject(s)
Carps/physiology , Pest Control, Biological , Water Pollutants , Water Purification/methods , Zooplankton , Animals , Eukaryota/growth & development , Food Chain , Nitrogen/analysis , Phosphorus/analysis , Population Density , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL