Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Ecotoxicol Environ Saf ; 273: 116128, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387144

ABSTRACT

BACKGROUND: Low-dose ionizing radiation-induced protection and damage are of great significance among radiation workers. We aimed to study the role of glutathione S-transferase Pi (GSTP1) in low-dose ionizing radiation damage and clarify the impact of ionizing radiation on the biological activities of cells. RESULTS: In this study, we collected peripheral blood samples from healthy adults and workers engaged in radiation and radiotherapy and detected the expression of GSTP1 by qPCR. We utilized γ-rays emitted from uranium tailings as a radiation source, with a dose rate of 14 µGy/h. GM12878 cells subjected to this radiation for 7, 14, 21, and 28 days received total doses of 2.4, 4.7, 7.1, and 9.4 mGy, respectively. Subsequent analyses, including flow cytometry, MTS, and other assays, were performed to assess the ionizing radiation's effects on cellular biological functions. In peripheral blood samples collected from healthy adults and radiologic technologist working in a hospital, we observed a decreased expression of GSTP1 mRNA in radiation personnel compared to the healthy controls. In cultured GM12878 cells exposed to low-dose ionizing radiation from uranium tailings, we noted significant changes in cell morphology, suppression of proliferation, delay in cell cycle progression, and increased apoptosis. These effects were partially reversed by overexpression of GSTP1. Moreover, low-dose ionizing radiation increased GSTP1 gene methylation and downregulated GSTP1 expression. Furthermore, low-dose ionizing radiation affected the expression of GSTP1-related signaling molecules. CONCLUSIONS: This study shows that low-dose ionizing radiation damages GM12878 cells and affects their proliferation, cell cycle progression, and apoptosis. In addition, GSTP1 plays a modulating role under low-dose ionizing radiation damage conditions. Low-dose ionizing radiation affects the expression of Nrf2, JNK, and other signaling molecules through GSTP1.


Subject(s)
Glutathione S-Transferase pi , Uranium , Adult , Humans , Glutathione S-Transferase pi/genetics , Radiation, Ionizing , Gamma Rays/adverse effects , Apoptosis
2.
Sci Rep ; 13(1): 18008, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865634

ABSTRACT

Heart rate (HR) is a crucial physiological signal that can be used to monitor health and fitness. Traditional methods for measuring HR require wearable devices, which can be inconvenient or uncomfortable, especially during sleep and meditation. Noncontact HR detection methods employing microwave radar can be a promising alternative. However, the existing approaches in the literature usually use high-gain antennas and require the sensor to face the user's chest or back, making them difficult to integrate into a portable device and unsuitable for sleep and meditation tracking applications. This study presents a novel approach for noncontact HR detection using a miniaturized Soli radar chip embedded in a portable device (Google Nest Hub). The chip has a [Formula: see text] dimension and can be easily integrated into various devices. The proposed approach utilizes advanced signal processing and machine learning techniques to extract HRs from radar signals. The approach is validated on a sleep dataset (62 users, 498 h) and a meditation dataset (114 users, 1131 min). The approach achieves a mean absolute error (MAE) of 1.69 bpm and a mean absolute percentage error (MAPE) of [Formula: see text] on the sleep dataset. On the meditation dataset, the approach achieves an MAE of 1.05 bpm and a MAPE of [Formula: see text]. The recall rates for the two datasets are [Formula: see text] and [Formula: see text], respectively. This study represents the first application of the noncontact HR detection technology to sleep and meditation tracking, offering a promising alternative to wearable devices for HR monitoring during sleep and meditation.


Subject(s)
Meditation , Humans , Heart Rate/physiology , Sleep , Monitoring, Physiologic/methods , Heart Rate Determination
3.
Sci China Life Sci ; 66(9): 2020-2040, 2023 09.
Article in English | MEDLINE | ID: mdl-37526911

ABSTRACT

The ionome is essential for maintaining body function and health status by participating in diverse key biological processes. Nevertheless, the distribution and utilization of ionome among different organs and how aging impacts the ionome leading to a decline in egg white quality remain unknown. Thus, we used inductively coupled plasma mass spectrometry (ICP-MS) to analyze 35 elements and their isotopic contents in eight organs of laying hens at 35, 72, and 100 weeks. Moreover, the magnum proteome, amino acids in egg white, and egg white quality were analyzed in laying hens at three different ages using 4D proteomics techniques, an amino acid analyzer, and an egg quality analyzer. Across the organs, we identified varying distribution patterns among macroelements (Mg24, Ca43/44, K39, and P31), transition metals (Zn64/66, Cu63/65, Fe56/57, and Mn55), and toxic elements (Pb208, Ba137, and Sr86). We observed an organ-specific aging pattern characterized by the accumulation of toxic elements (Pb208, Ba137, and Sr86) and calcification in the small intestine. Additionally, a decrease in the utilization of essential trace elements selenium (Se78/82) and manganese (Mn55) was noted in the oviduct. By analyzing ionome in tandem with egg quality, egg white amino acids, and proteome, we unveiled that the reduction of selenium and manganese concentrations in the magnum during the aging process affected amino acid metabolism, particularly tryptophan metabolism, thereby inhibiting the amino acid synthesis in the magnum. Furthermore, it accelerated the senescence of magnum cells through necroptosis activation, leading to a decline in the albumen secretion function of the magnum and subsequently reducing egg white quality. Overall, this study provides insights into the evolution of 35 elements and their isotopes across 8 organs of laying hens with age. It also reveals the elemental composition, interactions, and utilization patterns of these organs, as well as their correlation with egg white quality. The present study highlights the significance of ionome and offers a comprehensive perspective on the selection of ionome for regulating the aging of laying hens.


Subject(s)
Egg White , Selenium , Animals , Female , Proteome/metabolism , Chickens , Selenium/metabolism , Manganese/metabolism , Amino Acids/metabolism , Aging
4.
Life (Basel) ; 13(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37240754

ABSTRACT

In aging laying hens, reproductive changes reduce egg quality. Bacillus subtilis natto (B. subtilis) is a versatile bacterium with high vitamin K2 content, providing health benefits for animals and humans. This study investigated the effect of B. subtilis natto NB205 and its mutant NBMK308 on egg quality in aging laying hens. Results showed that NB205 and NBMK308 supplementation significantly improved albumen height (p < 0.001), Haugh units (p < 0.05), and eggshell thickness (p < 0.001) compared to the control group. Supplementation also increased ovalbumin expression, regulated tight junction (TJ) proteins, reduced pro-inflammatory cytokine levels, and improved the health and productivity of aging laying hens by regulating key apoptosis-related genes in the magnum part of the oviduct. There were differences in the expression of vitamin K-dependent proteins (VKDPs) in the magnum between NB205 and NBMK308, but no significant differences in the improvement of egg quality. Supplementation with NB205 and NBMK308 can improve egg quality in aging laying hens.

5.
J Environ Manage ; 339: 117886, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37084539

ABSTRACT

Phytoremediation is widely used for the restoration of aquatic environments. However, the phytoremediation effects and mechanisms of special submerged species of native aquatic plants, especially under low-temperature conditions, are not yet clear. In this study, two typical submerged plants, Myriophyllum aquaticum (M. aquaticum; an exotic species) and Hippuris vulgaris (H. vulgaris; a native species), in China were investigated for their phosphorus (P) removal efficiencies (REp) and the related mechanisms of phytophysiology and microorganisms in a low-temperature incubator (10 °C during the day and 2 °C at night). At an initial P level of 0.5 mg L-1, the two plants exhibited similar REp, with the highest values (73.5%-92.1%) observed on days 3-6. After 18 days, the residual P concentration in the water was less than the Grade III limit value (0.2 mg L-1; GB 3838-2002). However, M. aquaticum had a faster REp velocity than H. vulgaris at an initial P level of 3.0 mg L-1, which was attributed to the mechanisms of plant and its interactions with microorganisms. Compared to the control group, the superoxide dismutase activity of H. vulgaris was significantly increased and its catalase activity was decreased, whereas for that of M. aquaticum was the opposite. Micro region X-ray fluorescence analysis revealed that there may be synergic absorption effects between P, S, and K, and antagonistic absorption action between P and Mn in H. vulgaris. In addition, Acinetobacter, Novosphingobium and Pseudomonas were enriched at 3.0 mg L-1 P level with these two plants, but Chlorophyta only accumulated with H. vulgaris, respectively. Overall, the native species, H. vulgaris, could replace the exotic M. aquaticum to efficiently remove P from polluted water at low temperatures. These findings provide a theoretical foundation for submerged plants P removal capabilities, and the protection of local ecosystem diversity at low temperatures.


Subject(s)
Ecosystem , Saxifragales , Temperature , Phosphorus/analysis , Water/analysis , China , Nitrogen/analysis
6.
bioRxiv ; 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36945644

ABSTRACT

Atherosclerosis, the leading cause of cardiovascular disease, is a chronic inflammatory disease involving pathological activation of multiple cell types, such as immunocytes (e.g., macrophage, T cells), smooth muscle cells (SMCs), and endothelial cells. Multiple lines of evidence have suggested that SMC "phenotypic switching" plays a central role in atherosclerosis development and complications. Yet, SMC roles and mechanisms underlying the disease pathogenesis are poorly understood. Here, employing SMC lineage tracing mice, comprehensive molecular, cellular, histological, and computational profiling, coupled to genetic and pharmacological studies, we reveal that atherosclerosis, in terms of SMC behaviors, share extensive commonalities with tumors. SMC-derived cells in the disease show multiple characteristics of tumor cell biology, including genomic instability, replicative immortality, malignant proliferation, resistance to cell death, invasiveness, and activation of comprehensive cancer-associated gene regulatory networks. SMC-specific expression of oncogenic KrasG12D accelerates SMC phenotypic switching and exacerbates atherosclerosis. Moreover, we present a proof of concept showing that niraparib, an anti-cancer drug targeting DNA damage repair, attenuates atherosclerosis progression and induces regression of lesions in advanced disease in mouse models. Our work provides systematic evidence that atherosclerosis is a tumor-like disease, deepening the understanding of its pathogenesis and opening prospects for novel precision molecular strategies to prevent and treat atherosclerotic cardiovascular disease.

7.
BMC Plant Biol ; 23(1): 61, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36710356

ABSTRACT

BACKGROUND: Lotus (Nelumbo Adans.) is used as an herbal medicine and the flowers are a source of natural flavonoids. 'Da Sajin', which was firstly found in the plateau area, is a natural mutant in flower color with red streamers dyeing around white petals. RESULTS: The LC-MS-MS results showed that eight anthocyanin compounds, including cyanidin 3-O-glucoside, cyanidin 3-O-galactoside, malvidin 3-O-galactoside, and malvidin 3-O-glucoside, were differentially enriched in red-pigmented tissues of the petals, whereas most of these metabolites were undetected in white tissues of the petals. Transcriptome profiling indicated that the relative high expression levels of structural genes, such as NnPAL, NnF3H, and NnANS, was inconsistent with the low anthocyanin concentration in white tissues. Members of the NnMYB and NnbHLH transcription factor families were presumed to play a role in the metabolic flux in the anthocyanin and proanthocyanidin biosynthetic pathway. The expression model of translational initiation factor, ribosomal proteins and SKP1-CUL1-F-box protein complex related genes suggested an important role for translational and post-translational network in anthocyanin biosynthesis. In addition, pathway analysis indicated that light reaction or photo destruction might be an important external cause for floral color determination in lotus. CONCLUSIONS: In this study, it is supposed that the natural lotus mutant 'Da Sajin' may have originated from a red-flowered ancestor. Partial loss of anthocyanin pigments in petals may result from metabolic disorder caused by light destruction. This disorder is mainly regulated at post translation and translation level, resulting in a non-inherited phenotype. These results contribute to an improved understanding of anthocyanin metabolism in lotus, and indicate that the translational and post-translational regulatory network determines the metabolic flux of anthocyanins and proanthocyanidins under specific environmental conditions.


Subject(s)
Anthocyanins , Nelumbo , Anthocyanins/metabolism , Nelumbo/chemistry , Flavonoids/metabolism , Phenotype , Flowers/metabolism , Gene Expression Regulation, Plant
8.
Biochem Biophys Res Commun ; 638: 120-126, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36446154

ABSTRACT

INTRODUCTION: Myocardial infarction is a fatal disease that causes millions of deaths worldwide every year. The damage and recovery of cardiomyocytes are closely related to changes in gene expression. miRNA may be a new therapeutic target of myocardial ischemia-reperfusion. METHODS: The differential expression genes were analyzed based on GSE83500, GSE60993 and GSE154733. miRNA expression profile data and clinical data were downloaded from GSE76591. Bioinformatics analysis including limma package, cluster analysis, WGCNA analysis were performed. H9c2 cell hypoxia model and mouse myocardial ischemia model were established. Q-PCR, Western blot and luciferase assay were carried out. RESULTS: miR-1322 was identified as a significantly differentially expressed miRNA in myocardial ischemi. Yin Yang 1(YY1) was significantly highly expressed in cells with hypoxia treatment (P < 0.05), and myocardial ischemia mice (P < 0.01), which was identified as the transcription factor of miR-1322. The protein expression of LRP8 was lower in cells with hypoxia treatment and myocardial ischemia mice (P < 0.05) and LRP8 was the target gene of miR-1322. The overexpression of LRP8 could significantly increase the expression of p-PI3K, p-AKT, and P70 S6K (P < 0.05). LRP8 regulated PI3K/AKT/P70 S6K signaling pathway, eventually resulting in cell apoptosis. CONCLUSION: Our results suggested that miR-1322 can protect against the myocardial ischemia via LRP8/PI3K/AKT pathway.


Subject(s)
Coronary Artery Disease , MicroRNAs , Myocardial Ischemia , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Myocardial Ischemia/genetics , Myocardial Ischemia/prevention & control , Myocardial Ischemia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Disease Models, Animal , Hypoxia/metabolism , Apoptosis/genetics
9.
J Environ Manage ; 324: 116434, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36352733

ABSTRACT

Aquatic plants are widely used in depth treatment of wastewater; however, the phosphorus (P) removal mechanisms of aquatic plants at high temperatures in summer are not well understood. Eight aquatic plants, including two floating species (Ludwigia peploides and Hydrocharis dubia) and six emergent species (Lythrum salicaria, Sagittaria sagittifolia, Canna indica, Sparganium stoloniferum, Rotala rotundifolia, and Ludwigia ovalis), were treated with five P solutions (3.0, 3.5, 4.0, 4.5, and 5.5 mg L-1) for 5 weeks in a greenhouse during summer at air temperatures ranging from 25 to 35 °C. H. dubia, L. peploides, L. salicaria, and S. sagittifolia showed high water P removal efficiencies (exceeded 95%). Furthermore, their corresponding residual P concentrations in water were almost lower than the limit value of 0.2 mg L-1 of Grade III in the Chinese Environmental Quality Atandards for Surface Water (GB3838-2002). Plants have different water P removal paths. For example, H. dubia enriched more P with water P concentration increasing significantly. As the culture time increased, the water pH fluctuated significantly in the fall, and then H. dubia used the produced H+ enrich P. L. peploides did not enrich P, but proliferated rapidly, to remove P from water by increasing its fresh weight (FW). L. salicaria and S. sagittifolia showed two paths of enrich-P and FW increase. During the growth process of L. salicaria, the stem diameter and leaf length increased with an increase in P concentration in water or plant or both; however, the height and root length of L. peploides were reduced. Moreover, SOD and CAT activities responded to high P concentrations in water or high temperatures or both, which protected against oxidative damage. These findings could offer theoretical foundation and practical guidance for selection of aquatic plant species in depth treatment of wastewater during summer.


Subject(s)
Hydrocharitaceae , Phosphorus , Wastewater , Plants , Water
10.
J Environ Public Health ; 2022: 2485596, 2022.
Article in English | MEDLINE | ID: mdl-36254310

ABSTRACT

Ethnic music has too many expectations due to its significance to the national culture. It serves as a mirror, reflecting all the true characteristics of many geographical areas and ethnic groupings. Instilling national self-confidence and fostering national unity are essential outcomes of this. The optimal design plan for Xinjiang folk music inheritance and environmental monitoring based on big data technology is presented in this study from the standpoint of cultural ecology. Big data technology can categorize users who are interested in Xinjiang ethnic music, and after that, through customized recommendation filtering, consumers may be presented with Xinjiang ethnic music that meets their interests. Last but not least, a simulation test and analysis are performed. The algorithm's accuracy is 7.86% higher than that of the conventional algorithm, according to the simulation data. By studying and calculating the user's behavioral traits and interests, this result demonstrates in detail how the recommender system can display the user's content efficiently. However, there are numerous possibilities and varied contexts for the use of clustering techniques in recommender systems. It is crucially vital for directing the protection of ethnic music and fostering the inheritance and development of ethnic culture to conduct design study on the Xinjiang region's ethnic music heritage and development with cultural ecology as the central guiding principle. This article is from "A comprehensive study of Uygur Muqam music art with Chinese characteristics," which aims to improve the data reserve of the world and Southeast Asia on the research of Chinese Uighur Muqam art. Improve the inheritance and development of music in Xinjiang, China, and provide more detailed data to more scholars. This study adopts qualitative research methods and field survey data. The author proposes to focus on the perspective of cultural ecology, based on the use of big data technology, to improve the inheritance and development of Xinjiang national music.


Subject(s)
Music , Big Data , China , Data Analysis , Environmental Monitoring , Ethnicity/genetics , Humans
11.
J Appl Physiol (1985) ; 133(1): 234-245, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35736952

ABSTRACT

Acute whole body heat stress evokes sympathetic activation. However, the chronic effects of repeated moderate heat exposure (RMHE) on muscle sympathetic nerve activity (MSNA) in healthy individuals remain unclear. We performed RMHE with 4 wk (5 days/wk) of warm baths (∼40°C, for 30 min) in nine healthy older (59 ± 2 yr) volunteers. Hemodynamic variables and MSNA were examined before, 1 day after, and 1 wk following 4 wk of RMHE in a laboratory at ∼23°C. Cold pressor test (CPT) and handgrip (HG) exercise were performed during the tests. Under normothermic condition, the resting MSNA burst rate (prior, post, post 1-wk: 31.6 ± 2.0, 25.2 ± 2.0, and 27.7 ± 1.7 bursts/min; P < 0.001) and burst incidence (P < 0.001) significantly decreased after RMHE. Moreover, the resting heart rate significantly decreased after RMHE (62 ± 2, 60 ± 2, and 58 ± 2 beats/min, P = 0.031). The sensitivity of baroreflex control of MSNA and heart rate were not altered by RMHE, although the operating points were reset. The MSNA and hemodynamic responses (i.e., changes) to handgrip exercise or cold pressor test were not significantly altered. These data suggest that the RMHE evoked by warm baths decreases resting sympathetic activity and heart rate, which can be considered beneficial effects. The mechanism(s) should be examined in future studies.NEW & NOTEWORTHY To our knowledge, this is the first study to observe the effects of repeated warm baths on sympathetic nerve activity during rest and stress in healthy middle age and older individuals. The data suggest that the repeated warm baths decreased resting sympathetic activity and heart rate, which can be considered beneficial effects. This study also provides the first evidence that the repeated warm baths did not alter the baroreflex sensitivity and the sympathetic responses to stress.


Subject(s)
Baths , Hand Strength , Baroreflex/physiology , Blood Pressure/physiology , Hand Strength/physiology , Heart Rate/physiology , Humans , Middle Aged , Muscle, Skeletal/physiology , Sympathetic Nervous System/physiology , Water
12.
Curr Med Sci ; 42(4): 863-870, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35678908

ABSTRACT

OBJECTIVE: Lianhuaqingwen and Shuanghuanglian are drug treatment options for Corona Virus Disease 2019 (COVID-19). In China, use of traditional Chinese medicine with Shuanghuanglian or Lianhuaqingwen (for them, forsythiaside is the active antiviral and antibacterial component) in combination with azithromycin is common for the treatment of pediatric pneumonia. It is important to understand the reason why the combination of these compounds is better than a single drug treatment. This study aimed to explore the pharmacokinetic interaction between forsythiaside and azithromycin. METHODS: Twelve male Sprague-Dawley rats were randomly divided into an experimental group (Forsythia suspensa extract and azithromycin) and a control group (a single dose of Forsythia suspensa extract in 5% glucose solution). Plasma samples were collected at scheduled time points, and the high-performance liquid chromatography combined with ultraviolet method was used to determine the plasma forsythiaside concentration. Non-compartmental analysis and population pharmacokinetic methods were used to investigate the forsythiaside pharmacokinetic difference between the experimental and control group. RESULTS: Compared with a single administration, the area under the curve and half-life of forsythiaside increased, and forsythiaside clearance decreased significantly after co-administration with azithromycin. The in vivo behavior of forsythiaside could be described by the one compartment model. The forsythiaside clearance decreased when combined with azithromycin. Visual evaluation and bootstrap results suggested that the final model was precise and stable. CONCLUSION: Co-administration of azithromycin can significantly decrease the forsythiaside clearance and increase drug exposure. A lower dose of azithromycin can obtain sufficient forsythiaside concentration to provide antiviral and antibacterial activity.


Subject(s)
Azithromycin , COVID-19 Drug Treatment , Animals , Anti-Bacterial Agents/pharmacology , Antiviral Agents , Azithromycin/pharmacokinetics , Glycosides , Humans , Male , Rats , Rats, Sprague-Dawley
13.
J Nanobiotechnology ; 20(1): 96, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236356

ABSTRACT

BACKGROUND: Despite extensive investigations on photothermal therapy, the clinical application is restricted due to poor stability, low therapeutic efficacy of photothermal therapy agents and its affinity loss in the multistep synthesis of delivery carriers. To address this, we designed an IR792-MCN@ZIF-8-PD-L1 siRNA (IM@ZP) nanoparticle drug delivery system. IM@ZP was prepared by in situ synthesis and physical adsorption, followed by characterization. Photothermal conversion ability of IM@ZP was assessed by irradiation of near-infrared (NIR) laser, followed by analysis of its effect on 4T1 cell viability, maturation of dendritic cells (DCs) and the secretion of related cytokines in vitro, and the changes of tumor infiltrating T cells and natural killer (NK) cells in vivo. Subcutaneous 4T1 tumor-bearing mouse and lung metastasis models were established to investigate the role of IM@ZP in killing tumor and inhibiting metastasis in vivo. RESULTS: IM@ZP was uniform nanoparticles of 81.67 nm with the characteristic UV absorption peak of IR792, and could effectively adsorb PD-L1 siRNA. Under the irradiation of 808 nm laser, IM@ZP exhibited excellent photothermal performance. IM@ZP could be efficiently uptaken by 4T1 cells, and had high transfection efficiency of PD-L1 siRNA. Upon NIR laser irradiation, IM@ZP effectively killed 4T1 cells, upregulated HSP70 expression, induced DC maturation and increased secretion of TNF-α and IL-6 in vitro. Moreover, in vivo experimental results revealed that IM@ZP enhanced photothermal immunotherapy as shown by promoted tumor infiltrating CD8 + and CD4 + T cells and NK cells, and inhibited tumor growth and lung metastasis. CONCLUSION: Together, biocompatible IM@ZP nanoparticles result in high photothermal immunotherapy efficiency and may have a great potential as a delivery system for sustained cancer therapy.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Animals , B7-H1 Antigen , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Delivery Systems , Humans , Immunotherapy , Lasers , Mice , Phototherapy/methods , RNA, Small Interfering/therapeutic use , Triple Negative Breast Neoplasms/drug therapy
14.
Comput Methods Programs Biomed ; 214: 106550, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34861617

ABSTRACT

BACKGROUND AND OBJECTIVE: As a common pathological pulse, unsmooth pulse has important diagnostic value in traditional Chinese medicine (TCM). In modern pulse diagnosis, unsmooth pulse plays an important role in the diagnosis of disease location and nature, but there are few studies on it. In this paper, a pulse diagnosis approach based on acoustic waveforms was proposed, the wrist pulse was divided into five layers vertically for the first time. Five layers acoustic waves of the radial artery in stable coronary heart disease (CHD) patients and relatively healthy people were compared to explore whether there are abnormal changes in acoustic pulse in stable CHD patients. METHODS: The acoustic features of unsmooth pulse in patients with stable CHD were analyzed in time domain, frequency domain and empirical mode decomposition, combined with shannon entropy and multi-scale entropy. Sixteen pulse characteristics were discovered, and one-way analysis of variance were performed. The characteristics of the two groups were tested by T test. 13 features were used to identify patients with stable CHD by support vector machine (SVM). RESULTS: Compared to healthy people, all parameters of the third layer of the stable CHD left Cun pulse were significantly different from those of the healthy people. The identification rates of the fourth and third layer of the left Cun pulse were the first (90.79%) and the second (88.16%), respectively. CONCLUSION: Abnormal acoustic pulse appeared in the radial artery in patients with stable CHD. According to these changes, patients with stable CHD can be effectively identified from the perspective of pulse.


Subject(s)
Coronary Disease , Wrist , Acoustics , Coronary Disease/diagnosis , Heart Rate , Humans , Medicine, Chinese Traditional
15.
J Geriatr Cardiol ; 18(11): 857-866, 2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34908923

ABSTRACT

BACKGROUND: The Trial to Assess Chelation Therapy study found that edetate disodium (disodium ethylenediaminetetraacetic acid) chelation therapy significantly reduced the incidence of cardiac events in stable post-myocardial infarction patients, and a body of epidemiological data has shown that accumulation of biologically active metals, such as lead and cadmium, is an important risk factor for cardiovascular disease. However, limited studies have focused on the relationship between angiographically diagnosed coronary artery disease (CAD) and lead exposure. This study compared blood lead level (BLL) in Chinese patients with and without CAD. METHODS: In this prospective, observational study, 450 consecutive patients admitted to Beijing Anzhen Hospital with suspected CAD from November 1, 2018, to January 30, 2019, were enrolled. All patients underwent coronary angiography, and an experienced heart team calculated the SYNTAX scores (SXscore) for all available coronary angiograms. BLLs were determined with atomic absorption spectrophotometry and compared between patients with angiographically diagnosed CAD and those without CAD. RESULTS: In total, 343 (76%) patients had CAD, of whom 42% had low (0-22), 22% had intermediate (23-32), and 36% had high (≥ 33) SXscore. BLLs were 36.8 ± 16.95 µg/L in patients with CAD and 31.2 ± 15.75 µg/L in those without CAD (P = 0.003). When BLLs were categorized into three groups (low, middle, high), CAD prevalence increased with increasing BLLs (P < 0.05). In the multivariate regression model, BLLs were associated with CAD (odds ratio (OR): 1.023, 95% confidence interval (CI): 1.008-1.039; P = 0.0017). OR in the high versus low BLL group was 2.36 (95% CI: 1.29-4.42,P = 0.003). Furthermore, BLLs were independently associated with intermediate and high SXscore (adjusted OR: 1.050, 95% CI: 1.036-1.066; P < 0.0001). CONCLUSION: BLLs were significantly associated with angiographically diagnosed CAD. Furthermore, BLLs showed excellent predictive value for SXscore, especially for complex coronary artery lesions.

16.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3907-3914, 2021 Aug.
Article in Chinese | MEDLINE | ID: mdl-34472267

ABSTRACT

To evaluate the therapeutic effect of Potentilla discolor on 2,4,6-trinitrobenzensulfonic acid(TNBS)-induced experimental ulcerative colitis(UC) in rats and to determine its therapeutic mechanism through mitochondrial autophagy, immune cells, and cytokines. A rat model of UC was established by TNBS-ethanol enema. Rats were divided into six groups: control, UC model, sulfasalazine(positive drug), and high-dose, moderate-dose, and low-dose ethanol extract groups. After 14-day continuous administration of the corresponding drugs, the disease activity index(DAI) and hematoxylin and eosin(HE) were evaluated. The morphological structure of mitochondria was observed by using transmission electron microscope(TEM), mitophagy-related mRNA expression was detected by using Real-time quantitative polymerase chain reaction(qRT-PCR), immune cell differentiation in rat serum was detected by using flow cytometry(FCM), and cytokine expression in colon tissues of rats was detected by protein microarray. The results showed that compared with the model group, each dose group of P. discolor could significantly reduce the DAI of UC model rats, and decrease the degree of inflammatory cells infiltration in the colon tissue of UC model rats. Meanwhile the expressions of T cells and Th cells in the serum increased significantly, the expression of Tc cells in the serum decreased significantly. Transmission electron microscope found that there was fusion of mitochondria and lysosomes in the colon tissue of the administration group. The expressions of mitochondrial autophagy related genes NF-κB, p62 and parkin were significantly increased in colon tissues. The results of protein chip showed that compared with the model group, the high dose group of P. discolor could significantly regulate the expression of cytokines. In conclusion, these results suggested that P. discolor improved TNBS-induced acute ulcerative colitis in rats by regulating the mitochondrial autophagy and the inflammatory factor expression.


Subject(s)
Colitis, Ulcerative , Potentilla , Animals , Autophagy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Colon , Mitochondria , Potentilla/genetics , Rats
17.
Huan Jing Ke Xue ; 42(7): 3176-3185, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-34212643

ABSTRACT

In order to reveal the interaction of overlying water-interstitial water nitrogen and phosphorus nutrient salt in summer at the entrance region of Baiyangdian Lake, this study sampled six main rivers in the region during July 2019. An analysis of the overlying water and interstitial water quality characteristics and the diffusion flux of applied nutrients at the sediment-water interface revealed the effects of nutrient diffusion on sediments and overlying water. The overlying water analysis showed that the water quality was slightly alkaline in the Baiyangdian Lake. The content of dissolved oxygen (DO) was lower, which provided an anaerobic environment for the release of endogenous pollutants from sediments. The ammonia nitrogen (NH4+-N) ranged from 0.35 to 1.76 mg·L-1, and the content of ammonia nitrogen was the highest in the Zhulong River, which was the main source of water supply. The nitrate nitrogen (NO3--N) content ranged from 0.75 to 1.97 mg·L-1. The total dissolved nitrogen (TDN) ranged from 0.99 to 2.70 mg·L-1, and the content of TDN was the highest in Puhe River. The content of total dissolved phosphorus (TDP) was 0.03 to 0.15 mg·L-1, and the content of TDP was the highest was Baigouyin River, which is near the residential area. The results indicated that the content of ammonia nitrogen in the interstitial water was between 5.24 and 10.64 mg·L-1, which was 10 times that of the overlying water, and endogenous pollution in the former was severe. The nitrate nitrogen content ranged from 0.36 to 0.79 mg·L-1. The total dissolved nitrogen content was between 5.36 and 12.02 mg·L-1, which was 5 times higher than that of the overlying water. The total dissolved phosphorus was between 0.03 and 0.3 mg·L-1. According to integrated pollution index, the degree of interstitial water pollution was much higher than that of overlying water, and the sampling points are seriously polluted. The exchange flux analysis of NH4+-N, TDN, and TDP demonstrated that the diffusion flux of NH4+-N was between 1.71 and 7.43 mg·(m2·d)-1, and the diffusion rate of endogenous ammonia nitrogen to the overlying water was fastest in Fu River, the absorbing river in Baoding. The diffusion flux of total dissolved nitrogen was lower in the Baigouyin River, and the other five sample points averaged 9.11 mg·(m2·d)-1. In summer, the dissolved oxygen was lower and the water-sediment had a larger concentration difference, which led to massive nitrogen nutrient of sediment in anaerobic conditions released to the overlying water in great quantities that caused the serious pollution. The diffusion flux of dissolved total phosphorus showed that the sediment of Pinghe River acted as a "sink" of phosphorus nutrients, and the other sampling points ranged from 0.03 to 0.16 mg·(m2·d)-1, showing the state of phosphorus nutrient released upward to the overlying water. Finally, diffusion flux indicated that endogenous pollutants are crucial sources of overlying water pollutants. In order to effectively control the water quality in the entrance area, desilting the nitrogen and phosphorus nutrient salt of sediment is urgently required.


Subject(s)
Water Pollutants, Chemical , Water Quality , China , Environmental Monitoring , Geologic Sediments , Lakes , Nitrogen/analysis , Phosphorus/analysis , Water , Water Pollutants, Chemical/analysis
18.
Zhongguo Zhong Yao Za Zhi ; 46(4): 865-876, 2021 Feb.
Article in Chinese | MEDLINE | ID: mdl-33645091

ABSTRACT

The network pharmacology and molecular docking methods were used to explore the mechanism of Jinweitai Capsules in the treatment of acute and chronic gastritis, gastric and duodenal ulcers, and chronic colitis. The chemical components of herbs in Jinweitai Capsules were collected through TCMSP, CNKI and PubMed. Target prediction was performed through PubChem and SwissTargetPrediction databases; genes relating to acute and chronic gastritis, gastric and duodenal ulcers, chronic colitis were collected from OMIM database; potential targets of Jinweitai Capsules for relevant gastrointestinal diseases were obtained by Venny analysis; DAVID database was used to perform GO and KEGG enrichment analysis; protein interactions were obtained by STRING database and visua-lized by Cytoscape; AutoDockVina was used for molecular docking of AKT1, EGFR, PTPN11 and its reverse-selected chemical components. Potential mechanisms of Jinweitai Capsules in treating relevant gastrointestinal diseases were clarified according to the results of the docking. The results showed 86 potential active ingredients of Jinweitai Capsules and 268 potential targets for treatment of acute and chronic gastritis, gastric and duodenal ulcers, and chronic colitis. KEGG pathway enrichment analysis showed that 20 pathways relating to acute and chronic gastritis, gastric and duodenal ulcers, and chronic colitis mainly involved calcium signaling pathway and chemokine signaling pathway. Molecular docking showed a good binding activity between AKT1, EGFR, PTPN11 and its reverse screening chemical components. Jinweitai Capsules may exert an effect in the treatment of acute and chronic gastritis, gastric and duodenal ulcers, and chronic colitis by acting on AKT1, EGFR, PTPN11 and other targets in 15 signal pathways relating to cell inflammation and immunity, cell proliferation and apoptosis, Helicobacter pylori infection, and gastrointestinal tract.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Diseases , Helicobacter Infections , Helicobacter pylori , Medicine , Capsules , Gastrointestinal Diseases/drug therapy , Humans , Molecular Docking Simulation
19.
Ecotoxicol Environ Saf ; 213: 112032, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33582409

ABSTRACT

Swine wastewater (SW) treatment by Myriophyllum aquaticum is an important biotechnology for its resource utilization. However, some knowledge gaps remain in compound-pollutant removal in SW, especially in practical applications. To clarify the responses of M. aquaticum to the compound pollutants as well as the related operational parameters in SW treatment, three initial doses (0.5, 1.0, and 1.5 kg per pond in 150 L simulated SW) of M. aquaticum and a control (no plant; CK) were allocated to 12 ponds under a plastic roof in Nanjing city of Eastern China during 75 days in the summer of 2019. Results showed that M. aquaticum could be used as a pioneer plant to efficiently remove compounded pollutants of nitrogen (N), phosphorus (P), and especially for heavy metals in simulated SW. Compared with CK, M. aquaticum assisted in improving the total N, NH4+-N, NO3--N, NO2--N, and dissolved organic N by 30.1%, 100%, 100%, 97.6%, 20.2%, 39.8% whereas Cu, Zn, and Cd by 50.4%, 36.4% and 47.9% on average during the 75-day experiment in summer, respectively. Moreover, concentrations of Cu and Cd at day 75 were in the ranges of 1.92-2.82 and 0.64-1.47 g kg-1 DW, respectively, exceeding the corresponding limits of the heavy-metal hyperaccumulator. For the operational parameters, the optimized initial dose was 1.0 kg per pond with M. aquaticum harvested after 45 summer days, respectively. Given that M. aquaticum has been widely used as animal feed in recent years and limit values for Cu and Zn in animal feed are not set in China, the toxicities of Cu and Zn should be assessed and the guideline of their limit values needs to be established for safe feed production. Interestingly, NH4+-N could dominate the removal of heavy metals especially Cd in the simulated SW, however, related mechanisms are needed for further study.


Subject(s)
Metals, Heavy/analysis , Saxifragales/physiology , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Animals , China , Environmental Pollutants , Nitrogen/analysis , Nutrients , Phosphorus , Swine , Water Purification/methods
20.
J Proteome Res ; 20(1): 995-1004, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33151695

ABSTRACT

Protection against low-dose ionizing radiation is of great significance. Uranium tailings are formed as a byproduct of uranium mining and a potential risk to organisms. In this study, we identified potential biomarkers associated with exposure to low-dose radiation from uranium tailings. We established a Wistar rat model of low dose rate irradiation by intratracheal instillation of a uranium tailing suspension. We observed pathological changes in the liver, lung, and kidney tissues of the rats. Using isobaric tags for relative and absolute quantification, we screened 17 common differentially expressed proteins in three dose groups. We chose alpha-1 antiproteinase (Serpina1), keratin 17 (Krt17), and aldehyde dehydrogenase (Aldh3a1) for further investigation. Our data showed that expression of Serpina1, Krt17, and Aldh3a1 had changed after the intratracheal instillation in rats, which may be potential biomarkers for uranium tailing low-dose irradiation. However, the underlying mechanisms require further investigation.


Subject(s)
Uranium , Animals , Biomarkers , Mining , Proteomics , Rats , Rats, Wistar , Uranium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL