Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
J Ethnopharmacol ; 330: 118148, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38583734

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herb Panax notoginseng (PN) tonifies blood, and its main active ingredient is saponin. PN is processed by different methods, resulting in different compositions and effects. AIM OF THE STUDY: To investigate changes in the microstructure and composition of fresh PN processed by different techniques and the anti-anemia effects on tumor-bearing BALB/c mice after chemotherapy with cyclophosphamide (CTX). MATERIALS AND METHODS: Fresh PN was processed by hot-air drying (raw PN, RPN), steamed at 120 °C for 5 h (steamed PN, SPN), or fried at 130 °C, 160 °C, or 200 °C for 8 min (fried PN, FPN1, FPN2, or FPN3, respectively); then, the microstructures were compared with 3D optical microscopy, quasi-targeted metabolites were detected by liquid chromatography tandem mass spectrometry (LC‒MS/MS), and saponins were detected by high-performance liquid chromatography (HPLC). An anemic mouse model was established by subcutaneous H22 cell injection and treatment with CTX. The antianemia effects of PN after processing via three methods were investigated by measuring peripheral blood parameters, performing HE staining and measuring cell proliferation via immunofluorescence. RESULTS: 3D optical profiling revealed that the surface roughness of the SPN and FPN was greater than that of the other materials. Quasi-targeted metabolomics revealed that SPN and FPN had more differentially abundant metabolites whose abundance increased, while SPN had greater amounts of terpenoids and flavones. Analysis of the composition and content of the targeted saponins revealed that the contents of rare saponins (ginsenoside Rh1, 20(S)-Rg3, 20(R)-Rg3, Rh4, Rk3, Rg5) were greater in the SPN. In animal experiments, the RBC, WBC, HGB and HCT levels in peripheral blood were increased by SPN and FPN. HE staining and immunofluorescence showed that H-SPN and M-FPN promoted bone marrow and spleen cell proliferation. CONCLUSION: The microstructure and components of fresh PN differed after processing via different methods. SPN and FPN ameliorated CTX-induced anemia in mice, but the effects of PN processed by these two methods did not differ.


Subject(s)
Anemia , Cyclophosphamide , Mice, Inbred BALB C , Panax notoginseng , Saponins , Animals , Cyclophosphamide/toxicity , Panax notoginseng/chemistry , Mice , Saponins/pharmacology , Anemia/chemically induced , Anemia/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Cell Line, Tumor , Female
2.
Talanta ; 269: 125461, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38056416

ABSTRACT

Gastrodia elata Bl. is a widely used traditional Chinese medicine known for its medicinal properties. However, during the drying process, G. elata is often fumigated with sulfur to prevent corrosion and improve its appearance. Sulfur-fumigation can result in a reduction in the effective components of the herb and can also be hazardous to human health due to the remaining sulfur dioxide. Sulfur-fumigation of G. elata poses a significant challenge to both end-users and researchers. The detection of p-hydroxybenzyl hydrogen sulfite (p-HS) is a useful tool in determining whether G. elata has been fumigated with sulfur. Unfortunately, the current method for detecting p-HS is costly and requires sophisticated instruments. Therefore, there is a need to develop a more cost-effective and user-friendly method for the detection of p-HS. This study utilized the Capture-SELEX technique to screen high-affinity aptamers for p-HS, which were subsequently characterized by isothermal titration calorimetry (ITC). An aptamer sequence (seq 6) with a high affinity of Kd = 26.5 µM was obtained following 8 rounds of selection against p-HS. With the aptamer serving as the recognition element and gold nanoparticles as the colorimetric indicator, a simple and efficient colorimetric sensor was developed for the specific detection of p-HS. This detection method exhibited a limit of detection of 1 µg/ml, while the p-HS recoveries demonstrated a range of between 88.5 % and 105 % for samples of G. elata obtained in the market. In summary, the aptamer exhibited a high affinity for p-HS, and the sensor developed through the use of a colloidal gold detector based on nucleic acid aptamer can be utilized for rapid detection of sulfur-fumigated G. elata. With these findings, this research paper provides valuable scientific insights and highlights significant potential for future studies in this area.


Subject(s)
Drugs, Chinese Herbal , Gastrodia , Metal Nanoparticles , Humans , Gastrodia/chemistry , Drugs, Chinese Herbal/chemistry , Gold , Sulfur/chemistry
3.
Heliyon ; 9(11): e22098, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053910

ABSTRACT

To rapidly evaluate the quality of complex herbal preparations, a new strategy was proposed based on multi-color scale and efficacy-oriented high-performance thin-layer chromatography (HPTLC) characteristic fingerprint combined with chemometric method. Firstly, effective components were screened through high-performance liquid chromatography with ultraviolet detection and evaporative light-scattering (HPLC-UV-ELSD), using multi-wavelength fusion combined with network pharmacology and molecular docking techniques. Subsequently, guided by the effective components, the targeted HPTLC characteristic fingerprint was established by multi-color scale scanning. Finally, combined with the chemometric method, the consistency of the preparation quality was evaluated, the marker components leading to quality differences were screened, and the quality control limit was established. Sanwujiao Pills (SWJPs) is a herbal preparation composed of six herbs for treating rheumatoid arthritis (RA). Through this strategy, four HPTLC characteristic fingerprints were established, they were derived from five herbs and guided by eight effective components in SWJPs. Through similarity, clustering heatmap, principal component analysis (PCA), and orthogonal partial least squares discriminant analysis (OPLS-DA), the quality distinctions among the 12 batches of SWJPs were determined. These batches were categorized into two groups based on their production time, and eight components affecting the quality of the preparation were identified. Meanwhile, the quality control threshold for SWJPs was determined based on Hotelling's T2 and DModX methods. This strategy aims to rapidly evaluate the quality of complex herbal preparations by HPTLC and extends the application of HPTLC fingerprint chromatography for identifying herbal medicine species and activity-related quality detection. The proposed strategy is also helpful for the quality control of other complex herbal preparations.

4.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1203-1211, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005804

ABSTRACT

To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.


Subject(s)
Panax notoginseng , Panax , Saponins , Panax notoginseng/chemistry , Antioxidants/pharmacology , Saponins/pharmacology , Glutathione , Risk Assessment
5.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1483-1490, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005835

ABSTRACT

In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.


Subject(s)
Cadmium , Panax notoginseng , Cadmium/toxicity , Cadmium/metabolism , Antioxidants/pharmacology , Brassinosteroids/pharmacology , Chlorophyll/metabolism , Plant Roots/metabolism , Stress, Physiological
6.
J Ethnopharmacol ; 311: 116434, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37030555

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng-steamed chicken (PNSC) is a medicinal food with ethnic characteristics developed by the Miao ethnic group in the southeast of Yunnan Province, China. PNSC has been eaten for hundreds of years, and its tonic effect has been widely recognized by the people. However, its cooking conditions and scientific connotation of its effect of toning blood and supplementing deficiency are also lack of in-depth analysis. AIM OF THE STUDY: To optimize the cooking conditions of Panax notoginseng-steamed chicken (PNSC) and to explore its anemia-improving effects. MATERIALS AND METHODS: The ratio of P. notoginseng (PN) to chicken and the steaming time were systematically altered, and the PNSC cooking conditions was optimized with the response surface method. By establishing animal models of postpartum blood-deficiency anemia, acute hemorrhagic anemia and myelosuppressive anemia, the blood replenishing effect of PNSC was explored, and the blood replenishing mechanism of PNSC on myelosuppressive anemia was revealed by immunoblotting analyses and histopathological sectioning. RESULTS: The optimal processing conditions included a ratio of chicken to P. notoginseng of 100:5 and a steaming time of 5.5 h. The amounts of P. notoginseng polysaccharides (PNPS), total protein and blood-enriching P. notoginseng saponins were 44.3 mg/g, 2.48% and 2.04%, respectively. Freeze-dried powder of P. notoginseng steamed chicken soup (FPSC) was found to promote the recovery of routine blood factors and organ indexes in the three models of anemia and to activate the JAK2-STAT5 signaling pathway, induce phosphorylation of JAK2 and STAT5 and normalize the secretion of hematopoietic regulators EPO, IL-3, and TNF-α. CONCLUSION: FPSC improves the symptoms of anemia in mice, and it plays a role in tonifying blood by activating the JAK2-STAT5 signaling pathway and altering the expression of hematopoiesis-related factors.


Subject(s)
Panax notoginseng , Saponins , Female , Mice , Animals , Saponins/pharmacology , Chickens , STAT5 Transcription Factor , China
7.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36416120

ABSTRACT

Medicinal plants are the main source of natural metabolites with specialised pharmacological activities and have been widely examined by plant researchers. Numerous omics studies of medicinal plants have been performed to identify molecular markers of species and functional genes controlling key biological traits, as well as to understand biosynthetic pathways of bioactive metabolites and the regulatory mechanisms of environmental responses. Omics technologies have been widely applied to medicinal plants, including as taxonomics, transcriptomics, metabolomics, proteomics, genomics, pangenomics, epigenomics and mutagenomics. However, because of the complex biological regulation network, single omics usually fail to explain the specific biological phenomena. In recent years, reports of integrated multi-omics studies of medicinal plants have increased. Until now, there have few assessments of recent developments and upcoming trends in omics studies of medicinal plants. We highlight recent developments in omics research of medicinal plants, summarise the typical bioinformatics resources available for analysing omics datasets, and discuss related future directions and challenges. This information facilitates further studies of medicinal plants, refinement of current approaches and leads to new ideas.


Subject(s)
Plants, Medicinal , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Multiomics , Genomics , Proteomics , Computational Biology , Metabolomics
8.
Plant Dis ; 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36320130

ABSTRACT

Panax notoginseng (Burk.) F. H. Chen is a perennial plant species in the family Araliaceae, and its roots and rhizome are precious materials for the production of traditional Chinese medicine. From April to June, 2018, new disease symptoms were detected on the mature leaves of 2- and 3-year-old Panax notoginseng (P. notoginseng) in Wenshan Autonomous Prefecture, Yunnan Province, China, and the disease incidence was about 10%-15% among the analyzed fields (3.6 ha, 23°49'46.99″ N, 104°06'12.99″ E, 1,631 m elevation). The diseased leaves had dark brown necrotic lesions (0.9-2.5 × 1.0-3.5 cm) and curled downward. As the disease progressed, the necrosis gradually spread along the vein to other leaf parts, eventually covering the whole leaf. In the late disease stage, the whole leaf was decayed and yellowed. For pathogen isolation, infected leaves (n=20) were surface sterilized in 1% sodium hypochlorite and washed with sterilized distilled water for 3 mins before being cut into smaller pieces (~1cm2), then placed onto potato dextrose agar (PDA) medium and incubated at 28°C under aseptic conditions for 3 days. The hypha around leaf discs were transferred onto the new PDA. A total of 20 colonies (SQ1~20) were obtained and purified by single spore culture for morphological characterization and molecular biological identification. The colonies of all isolates were nearly round, grayish white at the initial stage, and then turned to grayish brown. In addition, microscopic examination (100× magnification) of 20 isolates revealed dark, septate, and sparsely branched conidiophores as well as dark brown conidia with short conical beaks at their tip. Additionally, conidia (solitary or in short chains) were typically oval or club-shaped and had 0-2 longitudinal septa and 2-4 transverse septa (20-35 × 8-12 µm) (n = 50). Moreover, the conidia had a smooth or verrucose surface. Their morphological characteristics were similar to those descriptions given for members of section Alternaria by Lawrence et al. (2016). In order to further identify pathogenic species, genomic DNA was extracted from the colonies (SQ1~20) using a modified cetyltrimethylammonium bromide (CTAB) method (Loganathan et al. 2014). The sequences of internal transcribed spacer regions of ribosomal DNA (rDNA ITS) and partial RNA polymerase II second subunit gene (RPB2) were amplified by PCR using fungal universal primers ITS1/ITS4 (White et al. 1990) and fRPB2-5F/fRPB2-7cR (Liu et al. 1999), respectively. The DNA sequencing shows that ITS sequences from 20 isolates were totally same, and so did the RPB2 sequences (supplementary material). BLASTN analysis of NCBI database indicated that the RPB2 and ITS sequences have the highest nucleotide homology to A. Alternata ITS (MW008974) and RPB2 (LC132700), respectively. These two gene sequences were submitted to GenBank [Accession numbers ON075466 (ITS) and OP572232 (RPB2)]. Phylogenetic trees based on the combined ITS and RPB2 sequences were constructed by maximum parsimony method. The referenced ITS and RPB2 sequences of Alternaria were from three published articles (Rama et al. 2020; Sun et al. 2021; Wee et al. 2006). Phylogenetic analysis revealed that this isolate was clustered with A. alternata. Therefore, the morphology-based preliminary identification was verified by the phylogenetic analysis, and the isolate from diseased P. notoginseng leaves was A. alternata. To confirm its pathogenicity, the fungal isolate was assessed with 40 1-year-old healthy P. notoginseng plants in a greenhouse. Among them, the leaves of 20 of P. notoginseng plants were wounded using a sterile needle (seven or eight wounds per leaf) and then inoculated with 1mL conidial suspension (1 × 106 conidia/mL) prepared from 7-day-old fungal cultures grown on PDA medium. The inoculated plants were covered with plastic bags at 25°C for 24 h to maintain humidity, and then transferred to the greenhouse maintained at 28°C with a 16-h day/8-h night cycle and continuous misting. The other 20 control plants were only wounded and sprayed with sterile water. Typical necrotic lesions were detected on all of the inoculated P. notoginseng leaves cultivated in the greenhouse for 1 week post-inoculation. As the disease continued to develop, the necrotic lesions enlarged, and the infected leaves turned yellow and withered. These symptoms were similar to those observed on the naturally infected P. notoginseng. In contrast, the mock-inoculated control plants remained healthy. Furthermore, the fungus re-isolated from the infected P. notoginseng leaves in the pot experiment had similar morphological characteristics as the original strain. In addition, its genomic DNA was extracted for PCR analysis of ITS and RPB2 sequences, and the following DNA sequencing shows that the two DNA sequences were same as those of isolates SQ1~20, which confirmed that the re-isolated fungus was A. alternata. To the best of our knowledge, this is the first report of A. alternata causing a P. notoginseng leaf disease in China.

9.
Molecules ; 27(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36235151

ABSTRACT

Panax notoginseng flowers have the highest content of saponins compared to the other parts of Panax notoginseng, but minor ginsenosides have higher pharmacological activity than the main natural ginsenosides. Therefore, this study focused on the transformation of the main ginsenosides in Panax notoginseng flowers to minor ginsenosides using the fungus of Cladosporium xylophilum isolated from soil. The main ginsenosides Rb1, Rb2, Rb3, and Rc and the notoginsenoside Fa in Panax notoginseng flowers were transformed into the ginsenosides F2 and Rd2, the notoginsenosides Fd and Fe, and the ginsenoside R7; the conversion rates were 100, 100, 100, 88.5, and 100%, respectively. The transformation products were studied by TLC, HPLC, and MS analyses, and the biotransformation pathways of the major ginsenosides were proposed. In addition, the purified enzyme of the fungus was prepared with the molecular weight of 66.4 kDa. The transformation of the monomer ginsenosides by the crude enzyme is consistent with that by the fungus. Additionally, three saponins were isolated from the transformation products and identified as the ginsenoside Rd2 and the notoginsenosides Fe and Fd by NMR and MS analyses. This study provided a unique and powerful microbial strain for efficiently transformating major ginsenosides in P. notoginseng flowers to minor ginsenosides, which will help raise the functional and economic value of the P. notoginseng flower.


Subject(s)
Ginsenosides , Panax notoginseng , Panax , Saponins , Chromatography, High Pressure Liquid , Cladosporium , Flowers/chemistry , Ginsenosides/analysis , Panax/chemistry , Panax notoginseng/chemistry , Saponins/analysis , Soil
10.
Front Pharmacol ; 13: 946900, 2022.
Article in English | MEDLINE | ID: mdl-35873541

ABSTRACT

Panax notoginseng (PN) is a Chinese medicinal herb that is traditionally used to treat inflammation and immune-related diseases. Its major active constituents are saponins, the types and levels of which can be changed in the process of steaming. These differences in saponins are causally relevant to the differences in the therapeutic efficacies of raw and steamed PN. In this study, we have prepared the extracts of steamed PN (SPNE) with 70% ethanol and investigated their immunomodulatory effect using a zebrafish tail-fin amputation model. A fingerprint-effect relationship analysis was performed to uncover active constituents of SPNE samples related to the inhibitory effect on neutrophil number. The results showed that SPNE significantly inhibited the neutrophil number at the amputation site of zebrafish larvae. And SPNE extracts steamed at higher temperatures and for longer time periods showed a stronger inhibitory effect. Ginsenosides Rh1, Rk3, Rh4, 20(S)-Rg3, and 20(R)-Rg3, of which the levels were increased along with the duration of steaming, were found to be the major active constituents contributing to the neutrophil-inhibiting effect of SPNE. By additionally investigating the number of neutrophils in the entire tail of zebrafish larvae and performing TUNEL assays, we found that the decreased number of neutrophils at the amputation site was due to both the inhibition of their migration and apoptosis-inducing effects of the ginsenosides in SPNE on neutrophils. Among them, Rh1 and 20(R)-Rg3 did not affect the number of neutrophils at the entire tail, suggesting that they only inhibit the migration of neutrophils. In contrast, ginsenosides Rk3, Rh4, 20(S)-Rg3, and SPNE did not only inhibit the migration of neutrophils but also promoted neutrophilic cell death. In conclusion, this study sheds light on how SPNE, in particular the ginsenosides it contains, plays a role in immune modulation.

11.
Phytomedicine ; 103: 154237, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35688101

ABSTRACT

BACKGROUND: With increased consumer demand in Europe for natural and efficacious health products, the use of herbal products in the market is rising. Products of Chinese herbal medicine (CHM) could greatly expand European consumer options; however, only seven herbal medicinal products (HMPs) based on CHM formulae have been registered in the European Union (EU) since 2012. PURPOSE: This study reviews the ten-year registration status of HMPs based on CHM formulae in Europe and identifies major challenges and possible solutions for pharmaceutical companies seeking market access for new HMPs. METHODS: An overview of relevant EU regulations identifies pathways to market access in EU countries for CHM products. A discussion of successful attempts to register HMPs based on CHM formulae since 2012 highlights specific challenges that applicants can expect to face. RESULTS: CHM products can enter the EU market as HMPs through the full or well-established use marketing authorization, or through the simplified registration procedure. Alternatively, some CHM products have entered the market as dietary supplements, nutritional foods, and agricultural products; however, under these categories, claims for medicinal use cannot be advertised. Since the registration of the first CHM product, Diao Xin Xue Kang (with the single component of Dioscorea nipponica rhizome), in 2012, only six other HMPs based on CHM formulae have been successfully registered. Among these, four are mono-component products. The remaining two products contain combinations of several herbal ingredients. It is more difficult to register combination products than mono-component products, due to their more complex composition and differences in registration requirements (esp. concerning establishing indications) in China and Europe. CONCLUSIONS: To promote the successful registration of CHM products in Europe, pharmaceutical companies are advised to: demonstrate full control of, and the ability to test, their supply chain and manufacturing procedures following the guidance of European competent authorities; carefully adhere to all steps of the registration process and advices from European competent authorities; take the medication habits and pharmaceutical needs of European market into consideration; and establish collaboration with European local organizations, as appropriate.


Subject(s)
Herbal Medicine , Plants, Medicinal , China , Europe , Humans , Phytotherapy , Policy
12.
Pharm Res ; 39(10): 2431-2446, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35359240

ABSTRACT

In this study, a novel hydrogel system incorporating an amino acid-based deep eutectic solvent (DES) was prepared, and the skin-permeation enhancement of traditional Chinese herb medicine was evaluated using "sanwujiaowan" extract as the model formula. Briefly, a DES-extract complex was constructed by co-heating the herb formula extracts with the amino acid as the hydrogen receptor and citric acid as the hydrogen donor. The DES-extract complex demonstrated excellent dissolution and skin permeability of the complicated ingredients in the extracts. Consequently, the DES-extract complex was introduced to a hydrogel system, which showed better mechanical properties and viscoelasticity performance. Using a collagen-induced arthritis rat model, the DES-hydrogels exerted an enhanced therapeutic effect that significantly reduced the inflammatory response with systemic toxicity of the extracts. Therefore, our work suggests a novel strategy for synergistic transdermal delivery of Chinese herb medicine and local treatments for rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Hydrogels , Amino Acids , Animals , Arthritis, Rheumatoid/drug therapy , China , Citric Acid , Deep Eutectic Solvents , Hydrogels/chemistry , Hydrogen , Rats
13.
Int J Pharm ; 619: 121716, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35367586

ABSTRACT

In the current times, achieving specific targeted and controllable drug delivery remains one of the major challenges in the treatment of hepatocellular carcinoma (HCC). The present study reported the development of a multiple functional indocyanine green (ICG)-cyclodextrin (CD) system, wherein loaded etoposide (EPS) was used as the model chemotherapeutic drug. In the developed system, ICG segment served as a photosensitizer for photothermal therapy (PTT) and the targeting moiety, which was primarily attributed to the specific retention properties in HCC tissues. The Ex vivo evaluation showed that ICG-CD@EPS exhibited a laser-triggered release profile with the photothermal efficiency and cytotoxicity towards HepG2 cells. In vivo evaluation suggested that ICG could navigate the systems to HCC tissues and retained at the site for 48 h, producing a drug accumulation in HCC. Further, laser irradiation boosted EPS release and local hyperthermia effects in HCC. Thus, the present study explored a novel and specific HCC targeting mechanism, and provided a feasible and controllable strategy for synergistic PTT and chemotherapy treatments for HCC.


Subject(s)
Carcinoma, Hepatocellular , Hyperthermia, Induced , Liver Neoplasms , Nanoparticles , Photochemotherapy , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Humans , Indocyanine Green , Liver Neoplasms/drug therapy , Phototherapy
14.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1438-1444, 2022 Mar.
Article in Chinese | MEDLINE | ID: mdl-35347941

ABSTRACT

Panax notoginseng is a perennial Chinese medicinal plant, which has serious continuous cropping obstacles and is prone to a variety of diseases and insect pests during the growth process. At present, the prevention and control of pests and diseases is mainly carried out through chemical pesticides, and the consequent pesticide residues of P. notoginseng have attracted much attention. This study reviewed the types and detection methods of pesticide residues in P. notoginseng from 1981 to 2021, and compared the limits of pesticide residues in P. notoginseng in China and abroad to provide a reference for rational application of pesticides in P. notoginseng and quality control of medicinal materials, thereby promoting the sustainable development of the P. notoginseng industry in China. Currently, there are only 40 published papers on pesticide residues of P. notoginseng, which is indicative of a serious problem of insufficient research. At present, hundreds of pesticide residues in P. notoginseng can be detected simultaneously by using chromatography-tandem mass spectrometry. The pesticides detected have gradually changed from early prohibited ones, such as dichlorodiphenyl trichloroethane(DDT), benzene hexachloride(BHC), and parathion, to low toxic ones(e.g., dimethomorph, procymidone, propicona-zole, and difenoconazole). The dietary risk from pesticide residues in P. notoginseng is low, which would not cause harm to consu-mers. This study concluded that in the future, the development of the quality standard for pesticide residues of P. notoginseng should be actively carried out. To increase the pesticides used in actual production in the quality standard based on the existing ones and to guide farmers to use pesticides scientifically will be the focus of future work.


Subject(s)
Panax notoginseng , Pesticide Residues , Pesticides , Plants, Medicinal , China , Pesticide Residues/analysis , Pesticides/analysis
15.
Zhongguo Zhong Yao Za Zhi ; 47(1): 1-6, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178905

ABSTRACT

Carbon dioxide peaking and carbon neutrality have become hot issues of political and economic activities in China and abroad. The structure and development of various industries in China will be profoundly affected in the process of accomplishing "Dual Carbon" goals. Eco-agriculture of Chinese medicine(EACM) highlights the balance and sustainable development of the ecosystem while producing high-quality medicinal materials. With chemically synthesized fertilizers, pesticides, and growth regulators prohibited, EACM emphasizes the recycling of agricultural and sideline products and the reduction of waste output, which results in the minimal negative impact on the ecological environment. Therefore, it is typical agriculture with low-carbon sources and high-carbon sinks. This study reviewed the mechanism and potential of EACM in carbon dioxide peaking and carbon neutrality, analyzed the specific ways of EACM in reducing carbon sources and increasing carbon sinks based on the typical ecological planting pattern, and proposed the point of view to strengthen EACM as well as the "Dual Carbon" theory and research methods, so as to direct low-carbon and efficient deve-lopment. Furthermore, this study advocated to comprehensively promote the transformation of Chinese medicine production from chemical agriculture to eco-agriculture to improve the comprehensive benefits of contribution rate of carbon neutrality, explore and establish carbon sink compensation mechanism to ensure the sustainable and healthy development of EACM, and strengthen the training of EACM and "Dual Carbon" theory and technologies to continuously improve the capacity of EACM in sustainable development. This study is expected to provide a reference for the development of ecological functions in EACM and the development of economic functions through ecological functions.


Subject(s)
Carbon Dioxide , Medicine, Chinese Traditional , Agriculture , China , Ecosystem , Fertilizers
16.
Zhongguo Zhong Yao Za Zhi ; 47(3): 635-642, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35178945

ABSTRACT

The continuous cropping obstacle of Panax notoginseng is serious, and effective control measures are lacking. Soil disinfection with chloropicrin(CP) has been proven to be effective in reducing the obstacles to continuous cropping of other crops. In order to ascertain the effect of CP in the continuous cropping of P. notoginseng, this paper explored the influences of CP at different treatment concentrations(0,30,40,50 kg/Mu, 1 Mu≈667 m~2) on soil macro-element nutrients, soil enzyme activity, growth and development of P. notoginseng, and the accumulation of medicinal components. The results showed that CP fumigation significantly increased the content of total nitrogen, alkali-hydrolyzable nitrogen, ammonium nitrogen, nitrate nitrogen, and available phosphorus in the soil, but it had no significant effect on potassium content. The soil protease activity showed a trend of first increasing and then decreasing with the prolonging of the treatment time. Both the soil urease and acid phosphatase activities showed a trend of first decreasing and then increasing with the prolonging of the treatment time. The higher the CP treatment concentration was, the lower the urease and acid phosphatase activities would be in the soil. The protease activity was relatively high after CP40 treatment, which was better than CP30 and CP50 treatments in promoting the nitrogen-phosphorus-potassium accumulation in P. notoginseng. The seedling survival rates after CP0, CP30, CP40, and CP50 tratments in October were 0, 65.56%, 89.44%, and 83.33%, respectively. Compared with the CP30 and CP50 treatments, CP40 treatment significantly facilitated the growth and development of P. notoginseng, the increase in fresh and dry weights, and the accumulation of root saponins. In summary, CP40 treatment accelerates the increase in soil nitrogen and phosphorus nutrients and their accumulation in P. notoginseng, elevates the seedling survival rate of P. notoginseng, enhances the growth and development of P. notoginseng, and promotes the accumulation of medicinal components. CP40 treatment is therefore recommended in production.


Subject(s)
Panax notoginseng , Fumigation , Growth and Development , Hydrocarbons, Chlorinated , Soil
17.
BMC Genomics ; 23(1): 86, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35100996

ABSTRACT

BACKGROUND: Panax notoginseng (Burk.) F. H. Chen (PN) belonging to the genus Panax of family Araliaceae is widely used in traditional Chinese medicine to treat various diseases. PN taproot, as the most vital organ for the accumulation of bioactive components, presents a variable morphology (oval or long), even within the same environment. However, no related studies have yet explained the molecular mechanism of phenotypic differences. To investigate the cause of differences in the taproot phenotype, de novo and comparative transcriptomic analysis on PN taproot was performed. RESULTS: A total of 133,730,886 and 114,761,595 paired-end clean reads were obtained based on high-throughput sequencing from oval and long taproot samples, respectively. 121,955 unigenes with contig N50 = 1,774 bp were generated by using the de novo assembly transcriptome, 63,133 annotations were obtained with the BLAST. And then, 42 genes belong to class III peroxidase (PRX) gene family, 8 genes belong to L-Ascorbate peroxidase (APX) gene family, and 55 genes belong to a series of mitogen-activated protein kinase (MAPK) gene family were identified based on integrated annotation results. Differentially expressed genes analysis indicated substantial up-regulation of PnAPX3 and PnPRX45, which are related to reactive oxygen species metabolism, and the PnMPK3 gene, which is related to cell proliferation and plant root development, in long taproots compared with that in oval taproots. Furthermore, the determination results of real-time quantitative PCR, enzyme activity, and H2O2 content verified transcriptomic analysis results. CONCLUSION: These results collectively demonstrate that reactive oxygen species (ROS) metabolism and the PnMPK3 gene may play vital roles in regulating the taproot phenotype of PN. This study provides further insights into the genetic mechanisms of phenotypic differences in other species of the genus Panax.


Subject(s)
Panax notoginseng , Gene Expression Profiling , Hydrogen Peroxide , Panax notoginseng/genetics , Plant Roots/genetics , Transcriptome
18.
J Ethnopharmacol ; 288: 114941, 2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35007683

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng (PN) (Burk.) F. H. Chen is a medicinal herb used to treat blood disorders since ancient times, of which the steamed form exhibits the anti-anemia effect and acts with a "blood-tonifying" function according to the traditional use. However, its pharmacological effect and mechanism on alleviating renal anemia (RA) are still unclear. AIMS OF THE STUDY: The study aims to investigate the effect of steamed Panax notoginseng (SPN) to attenuate RA and its underlying mechanism based on the model of adenine-induced RA mice. MATERIALS AND METHODS: Seventy mice were randomly divided into seven groups of ten: the control group, model group, the erythropoietin (EPO) group, the Fufang E'jiao Jiang (FEJ) group, the high-dose steamed PN (H-SPN) group, the middle-dose steamed PN (M-SPN) group, and the low-dose steamed PN (L-SPN) group. The adenine induction RA model was applied to assess the "blood enriching" function of SPN. The blood routine indexes, erythrocyte fragility, pathologic morphology of kidney tissue and the expression levels of related cytokines and proteins in the mice were detected after 3-week administration with SPN and positive drugs. RESULTS: Our study provided evidences that SPN could ameliorate RA. Compared with the control group, SPN could attenuate RA by significantly increasing the numbers of peripheral blood cells (p < 0.01), improving the erythrocyte fragility (p < 0.01), and restoring the expression of EPO mRNA in the kidneys and EPO receptor mRNA in bone marrow nucleated cells. The expression of TGF-ß1 mRNA was declined and the expression of HGF mRNA was significantly increased in a dose-dependent way after the treatment of SPN. Additionally, the expression of Bcl-2 and Bcl-2/Bax ratio in the kidneys were significantly increased. In contrast, there was a highly significant decrease in the expression of Bax (p < 0.01), following SPN treatment. CONCLUSION: SPN could alleviate RA by promoting the overall hematopoiesis and inhibiting the progress of renal injury in mice.


Subject(s)
Anemia/drug therapy , Drugs, Chinese Herbal/pharmacology , Panax notoginseng/chemistry , Renal Insufficiency, Chronic/drug therapy , Adenine , Anemia/etiology , Animals , Animals, Outbred Strains , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Female , Male , Mice , Renal Insufficiency, Chronic/complications , Steam
19.
Phytopathology ; 112(6): 1323-1334, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34844417

ABSTRACT

Root rot of Panax notoginseng, a precious Chinese medicinal plant, seriously impacts its sustainable production. However, the molecular regulatory mechanisms employed by P. notoginseng against root rot pathogens, including Fusarium solani, are still unclear. In this study, the PnMYB2 gene was isolated, and its expression was affected by independent treatments with four signaling molecules (methyl jasmonate, ethephon, salicylic acid, and hydrogen peroxide) as assessed by quantitative real-time PCR. Moreover, the PnMYB2 expression level was induced by F. solani infection. The PnMYB2 protein localized to the nucleus and may function as a transcription factor. When overexpressed in transgenic tobacco, the PnMYB2 gene conferred resistance to F. solani. Jasmonic acid (JA) metabolism and disease resistance-related genes were induced in the transgenic tobacco, and the JA content significantly increased compared with in the wild type. Additionally, transcriptome sequencing, Kyoto Encyclopedia of Genes and Genomes annotation enrichment, and metabolic pathway analyses of the differentially expressed genes in the transgenic tobacco revealed that JA metabolic, photosynthetic, and defense response-related pathways were activated. In summary, PnMYB2 is an important transcription factor in the defense responses of P. notoginseng against root rot pathogens that acts by regulating JA signaling, photosynthesis, and disease-resistance genes.


Subject(s)
Fusarium , Panax notoginseng , Cyclopentanes , Disease Resistance/genetics , Fusarium/metabolism , Oxylipins , Panax notoginseng/genetics , Panax notoginseng/metabolism , Photosynthesis , Plant Diseases/genetics , Signal Transduction , Nicotiana/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Front Pharmacol ; 13: 1104096, 2022.
Article in English | MEDLINE | ID: mdl-36699048

ABSTRACT

Chinese herbal medicines (CHMs), with a wide range of bioactive components, are considered to be an important source for new drug discovery. However, the process to isolate and obtain those bioactive components to develop new drugs always consumes a large amount of organic solvents with high toxicity and non-biodegradability. Natural deep eutectic solvents (NADES), a new type of green and designable solvents composed of primary plant-based metabolites, have been used as eco-friendly substitutes for traditional organic solvents in various fields. Due to the advantages of easy preparation, low production cost, low toxicity, and eco-friendliness, NADES have been also applied as extraction solvents, media, and drug delivery agents in CHMs in recent years. Besides, the special properties of NADES have been contributed to elucidating the traditional processing (also named Paozhi in Chinese) theory of CHMs, especially processing with honey. In this paper, the development process, preparation, classification, and applications for NADES in CHMs have been reviewed. Prospects in the future applications and challenges have been discussed to better understand the possibilities of the new solvents in the drug development and other uses of CHMs.

SELECTION OF CITATIONS
SEARCH DETAIL