Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell Mol Neurobiol ; 42(8): 2893-2907, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34698960

ABSTRACT

Aging is a risk factor for multiple retinal degeneration diseases. Entraining brain gamma oscillations with gamma-flicker light (γFL) has been confirmed to coordinate pathological changes in several Alzheimer's disease mouse models and aged mice. However, the direct effect of γFL on retinal aging remains unknown. We assessed retinal senescence-associated beta-galactosidase (ß-gal) and autofluorescence in 20-month-old mice and found reduced ß-gal-positive cells in the inner retina and diminished lipofuscin accumulation around retinal vessels after 6 days of γFL. In immunofluorescence, γFL was further demonstrated to ameliorate aging-related retinal changes, including a decline in microtubule-associated protein 1 light chain 3 beta expression, an increase in complement C3 activity, and an imbalance between the anti-oxidant factor catalase and pro-oxidant factor carboxymethyl lysine. Moreover, we found that γFL can increase the expression of activating transcription factor 4 (ATF4) in the inner retina, while revealing a decrease of ATF4 expression in the inner retina and positive expression in the outer segment of photoreceptor and RPE layer for aged mice. Western blotting was then used to confirm the immunofluorescence results. After mRNA sequencing (NCBI Sequence Read Archive database: PRJNA748184), we found several main mechanistic clues, including mitochondrial function and chaperone-mediated protein folding. Furthermore, we extended γFL to aged Apoe-/- mice and showed that 1-m γFL treatment even improved the structures of retinal-pigment-epithelium basal infolding and Bruch's membrane. Overall, γFL can orchestrate various pathological characteristics of retinal aging in mice and might be a noninvasive, convenient, and tissue-specific therapeutic strategy for retinal aging.


Subject(s)
Complement C3 , Lipofuscin , Activating Transcription Factor 4/metabolism , Animals , Antioxidants/metabolism , Apolipoproteins E/metabolism , Catalase/metabolism , Complement C3/metabolism , Lipofuscin/metabolism , Lysine/metabolism , Mice , Microtubule-Associated Proteins/metabolism , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Retina/metabolism , beta-Galactosidase/metabolism
2.
World J Gastroenterol ; 27(19): 2366-2375, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34040328

ABSTRACT

BACKGROUND: Many studies have investigated the relationships between vitamins and esophageal cancer (EC). Most of these studies focused on the roles of vitamins in the prevention and treatment of EC, and few studies have examined the changes in vitamin nutritional status and their influencing factors before and after chemotherapy for EC. Chemotherapy may have a considerable effect on EC patients' vitamin levels and hematological indicators. AIM: To research the nutritional status of multiple vitamins in EC patients during chemotherapy and to assess its clinical significance. METHODS: EC patients admitted to our center from July 2017 to September 2020 were enrolled in this study. Serum concentrations of nine vitamins (A, D, E, B9, B12, B1, C, B2 and B6), hemoglobin, total protein, albumin, blood calcium, blood phosphorus concentrations and body mass index (BMI) were measured in all EC patients. The changes in nine vitamins, hematological indicators and BMI were compared before and after two cycles of chemotherapy. The possible influential factors were analyzed. RESULTS: In total, 203 EC patients receiving chemotherapy were enrolled in this study. Varying degrees of vitamin A, D, C and B2 deficiency and weight loss were found in these patients, and the proportions of vitamin B2 and vitamin C deficiencies increased significantly after chemotherapy (both P < 0.05). Serum concentrations of vitamins A, C, B2 and B6 and BMI before and after chemotherapy were statistically significant (all P < 0.05). Multivariate analysis showed that vitamin A levels significantly differed between male and female EC patients, whereas vitamin D concentration significantly differed in EC patients in different stages (all P < 0.05). Correlations were observed between the changes in serum concentrations of vitamin A and C before and after two cycles chemotherapy and the change in BMI (P < 0.05). Hemoglobin, total protein, serum albumin and blood calcium concentrations significantly decreased in EC patients after chemotherapy (all P < 0.05), while the blood phosphorus level significantly increased after chemotherapy (P < 0.05). Using the difference in vitamin concentrations as the independent variables and the difference in BMI as the dependent variable, logistic regression analysis revealed statistically significant differences for vitamin A, vitamin D and vitamin C (F = 5.082, P = 0.002). CONCLUSION: Vitamin A, D, C and B2 were mainly deficient in patients with EC during chemotherapy. Multivitamin supplementation may help to improve the nutritional status, chemotherapy tolerance and efficacy.


Subject(s)
Esophageal Neoplasms , Vitamins , Ascorbic Acid , Esophageal Neoplasms/drug therapy , Female , Humans , Male , Nutritional Status , Vitamin A
3.
Environ Res ; 197: 111060, 2021 06.
Article in English | MEDLINE | ID: mdl-33798518

ABSTRACT

Short chain chlorinated paraffins (SCCPs) have received increased interest worldwide since they were added to the list of controlled POPs in Annex A of the Stockholm Convention in 2017. Although many toxicological studies have already shown that SCCPs are hepatotoxic, nephrotoxic, and thyrotoxic to rodents, there have been few studies to date that have characterized changes in the metabolic pathways targeted by SCCPs. In this study, a UPLC-Q-TOF-MS based plasma metabolomics approach was used to investigate the toxicity of SCCPs in rats. Liver and kidney injury occurred rapidly after high-dose SCCP exposure, and the most relevant pathways affected were energy metabolism, amino acid metabolism, glycerophospholipid metabolism, nucleotide metabolism, and vitamin B metabolism. Exposure to SCCPs inhibited the tricarboxylic acid cycle and accelerated degradation. Fluctuating levels of phospholipids and nucleotides may have contributed to the neurotoxicity of SCCPs. In addition, the down regulation of folic acid induced by SCCPs may have led to malformations during the early development of laboratory animals. These results suggested that high exposure levels of SCCPs may have serious health risks and more research is needed to assess the health status of relevant occupational groups.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , Animals , China , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/toxicity , Lipid Metabolism , Metabolic Networks and Pathways , Metabolomics , Paraffin/analysis , Paraffin/toxicity , Rats
4.
J Pharm Biomed Anal ; 196: 113903, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33493743

ABSTRACT

In this research, a comprehensive and innovative method was established for the qualitative and quantitative analysis of the main components in Mahonia fortune (MF). On the one hand, comprehensive insight of the constituents in MF extracts was achieved with a Q­Exactive HF Mass Spectrometer using data-independent acquisition method. The identification of 17 compounds was based on comparison with authentic reference standards and the deduction of 119 additional compounds both in positive and negative modes was using the MS-dial strategy and comparison with literature data. The proportion of alkaloids and phenols were the most in MF. On the other hand, an ultra-performance liquid chromatographic-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) method for the quantification of 25 components in MF extract were developed and validated. The method established provided satisfactory precision and accuracy; acceptable recovery and stability; a good linearity and a reasonable limit of detection. The MF samples from 11 different sources were detected, and relative principal component analysis were applied to discriminate these samples. The variations of Columbamine, Jatrorrhizine, Palmatine and Berberine were suggested as important indicators of MF quality. This study supplies a novel and comprehensive method for the quality evaluation of MF. This research presents a MS based analytical strategy which shows an application potential in the analysis of the chemical constituents in Traditional Chinese Medicine (TCM).


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Mahonia , Chromatography, High Pressure Liquid , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
5.
J Pharm Biomed Anal ; 179: 113013, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31806398

ABSTRACT

The stems of Mahonia fortunei (MF) are commonly used in Chinese Traditional Medicine and contain multiple bioactive compounds, including 3,4,5-trimethoxyphenol-1-O-ß-d-glucopyranoside (1), 5-hydroxypicolinic acid methyl ester (2), acortatarin A (3), syringic acid (4), 9-epi-acortatarin A (5), vomifoliol (6), corydaldine (7), noroxyhydrastinine (8), columbamine (9), jatrorrhizine (10), palmatine (11), berberine (12) and schisandrin (13). The pharmacokinetics of these 13 compounds in the rat plasma were assessed using a novel sensitive, rapid, and specific UPLC-ESI-MS/MS method after oral administration of an aqueous extract of MF stems. Carbamazepine was employed as the internal standard (IS) and all samples were precipitated with acetonitrile. Chromatographic separation was performed on a C18 column using a gradient elution at 0.3 mL/min, with the mobile phase consisting of acetonitrile and 0.06 % formic acid and 5 mM ammonium acetate aqueous solution. The calibration curves showed satisfactory linearity in the examination area (r2 ≥ 0.99). The accuracy, precision, extraction recovery, matrix effect, and stability were within acceptable ranges. The method successfully assessed the pharmacokinetics of these 13 compounds. In vitro, compound 12 exhibited potent inhibitory activity against production of nitric oxide (NO) in the RAW264.7 cell line when stimulated by lipopolysaccharide (LPS), while compounds 7, 12, and 13 were the most potent inhibitors of NO production in the BV2 cell line when stimulated by LPS. The IC50 values of compounds 7, 12 and 13 were 42.81, 20.55 and 22.74 µM. We conclude that these compounds have promise for clinical application, although their synergistic action may be more effective than that by any single compound alone.


Subject(s)
Anti-Inflammatory Agents/analysis , Mahonia/chemistry , Plant Extracts/analysis , Administration, Oral , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Inhibitory Concentration 50 , Male , Mice , Nitric Oxide/metabolism , Plant Extracts/pharmacokinetics , Plant Extracts/pharmacology , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
6.
Molecules ; 24(22)2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31718071

ABSTRACT

Psoralen (P) and isopsoralen (IP) are the main active ingredients in the dried fruit of Psoralen corylifolia L. (PC), with a wide range of pharmacology activities. The intestinal bacteria biotransformation plays a central role in the metabolism of the complex ingredients in traditional Chinese medicine (TCM). Our study aimed to investigated the metabolic profile of P and IP in the intestinal condition, co-cultured with human fecal bacteria anaerobically. Four bio-transforming products were obtained, including 6,7-furano-hydrocoumaric acid (P-1) and 6,7-furano-hydro- coumaric acid methyl ester (P-2), which transformed from P, and 5,6-furano-hydrocoumaric acid (IP-1) and 5,6-furano-hydrocoumaric acid methyl ester (IP-2), which were transformed from IP. It is worth mentioning that IP-2 is a new compound that has not been published. Their structures were analyzed based on their spectroscopic data. Moreover, a highly sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was used to characterize the metabolic pathways of P, IP, and their bio-transforming products in the reaction samples. In addition, the dampening effects against the oxidative stress of P, IP, and their bio-transforming products by human intestinal flora were estimated in vitro via the human colorectal cells (HCT116) and heterogeneous human epithelial colorectal adenocarcinoma cells (Caco-2) cell lines. The results showed that the metabolites have stronger activity than P and IP, which possibly provides a basis for elucidating the treating mechanisms of PC extract against inflammatory bowel disease.


Subject(s)
Biotransformation , Ficusin/metabolism , Furocoumarins/metabolism , Gastrointestinal Microbiome , Chromatography, High Pressure Liquid , Ficusin/chemistry , Furocoumarins/chemistry , Humans , Limit of Detection , Metabolomics/methods , Molecular Structure , Oxidative Stress , Tandem Mass Spectrometry , Time Factors
7.
Molecules ; 24(15)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349647

ABSTRACT

Aldose reductase (AR) is a drug target for therapies to treat complications caused by diabetes mellitus, and the development of effective AR inhibitors (ARIs) of natural origin is considered to be an attractive option for reducing these complications. In this research, the rat lens AR (RLAR) inhibitory activity of evening primrose (Oenothera biennis) seeds was investigated for the first time. In our results, the 50% (v/v) methanol extract of evening primrose seeds exhibits excellent RLAR inhibitory activity (IC50 value of 7.53 µg/mL). Moreover, after enrichment of its bioactive components, the ARIs are more likely to be present in the ethyl acetate fraction of 50% (v/v) methanol extract (EME) of evening primrose seeds, which exhibits superior RLAR inhibitory activity (IC50 value of 3.08 µg/mL). Finally, gallic acid (1), procyanidin B3 (2), catechin (3), and methyl gallate (4) were identified as the major ARIs from the EME by affinity-based ultrafiltration-high-performance liquid chromatography and were isolated by high speed countercurrent chromatography, with gallic acid (11.46 µmol/L) and catechin (14.78 µmol/L) being the more potent inhibitors of the four ARIs identified. The results demonstrated that evening primrose seeds may be a potent ingredient of ARIs.


Subject(s)
Aldehyde Reductase/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Oenothera biennis/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seeds/chemistry , Animals , Chemical Fractionation , Chromatography, High Pressure Liquid , Drug Evaluation, Preclinical , Enzyme Activation , Enzyme Inhibitors/isolation & purification , Lens, Crystalline/enzymology , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/isolation & purification , Rats
SELECTION OF CITATIONS
SEARCH DETAIL