Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Affiliation country
Publication year range
1.
Water Environ Res ; 92(1): 138-148, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31486194

ABSTRACT

Nutrient enrichment facilitates algal outbreaks in eutrophic shallow lakes. To further understand the influence of various inorganic nutrient forms on cyanobacterial blooms, a nitrate (NO3 ), ammonium (NH4 ), and orthophosphate (PO4 ) amendment experiment was conducted in a large shallow lake of China (Lake Taihu) during summer. The results showed that the photosynthetic performance of phytoplankton responded more positively to phosphorus (P) than nitrogen (N), and NH4 addition stimulated higher algal photosynthetic activities in P-enriched waters. Individual inorganic N or PO4 addition significantly activated cyanobacteria and green algae. Meanwhile, the N plus P amendment promoted higher biomass of the planktonic microbial community, and the dual addition of NH4  + PO4 yielded the highest chlorophyll a concentration. NH4 additions provisionally promoted higher green algae than cyanobacteria biomass in the beginning, while cyanobacteria dominated again with increasing NH4 :PO4 ratios. These results revealed that increasing ammonium would enhance the increase in phytoplankton biomass in advance and prolong the duration of algal blooms. Hence, based on the control of P loading, the reduction in external inorganic N focusing on ammonium sources (such as ammonia N fertilizer) at the watershed scale would help to alleviate eutrophication and cyanobacterial blooms over the long term in Lake Taihu. PRACTITIONER POINTS: Ammonium addition stimulated higher algal photosynthetic activities in P-enriched waters. Individual inorganic N or PO4 addition significantly activated cyanobacteria and green algae. The dual addition of NH4  + PO4 yielded the highest chlorophyll a concentration. Increasing NH4 would enhance the increase in phytoplankton biomass in advance and prolong the duration of cyanobacterial blooms.


Subject(s)
Cyanobacteria , Lakes , Bays , Biomass , China , Chlorophyll A , Eutrophication , Nitrogen , Nutrients , Phosphorus , Phytoplankton
2.
Environ Sci Pollut Res Int ; 26(29): 30524-30532, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31482526

ABSTRACT

Chlorophyll-a (CHLA) is a key indicator to represent eutrophication status in lakes. In this study, CHLA, total phosphorus (TP), total nitrogen (TN), turbidity (TB), and Secchi depth (SD) collected by the United States Environmental Protection Agency for the National Lakes Assessment in the continental USA were analyzed. Statistical analysis showed that water quality variables in natural lakes have strong patterns of autocorrelations than man-made lakes, indicating the perturbation of anthropogenic stresses on man-made lake ecosystems. Meanwhile, adaptive neuro-fuzzy inference systems (ANFIS) with fuzzy c-mean-clustering algorithm (ANFIS_FC), ANFIS with grid partition method (ANFIS_GP), and ANFIS with subtractive clustering method (ANFIS_SC) were implemented to model CHLA in lakes, and modeling results were compared with the multilayer perceptron neural network models (MLPNN). Results showed that ANFIS_FC models outperformed other models for natural lakes, while for man-made lakes, MLPNN models performed the best. ANFIS_GP models have the lowest accuracies in general. The results indicated that ANFIS models can be screening tools for an overall estimation of CHLA levels of lakes in large scales, especially for natural lakes.


Subject(s)
Artificial Intelligence , Chlorophyll A/analysis , Environmental Monitoring/methods , Lakes/analysis , Algorithms , Chlorophyll/analysis , Cluster Analysis , Ecosystem , Eutrophication , Lakes/chemistry , Nitrogen/analysis , Phosphorus/analysis , United States , United States Environmental Protection Agency , Water Quality
3.
PLoS One ; 13(5): e0195205, 2018.
Article in English | MEDLINE | ID: mdl-29723219

ABSTRACT

Cyanobacterial blooms are a worldwide environmental problem and frequently occur in eutrophic lakes. Organophosphorus mineralization regulated by microbial alkaline phosphatase provides available nutrients for bloom regeneration. To uncover the dynamics of bacterial alkaline phosphatase activity and microbial backgrounds in relation to organophosphorus mineralization during the decomposition process of cyanobacterial blooms, the response of alkaline phosphatase PhoX-producing bacteria were explored using a 23-day mesocosm experiment with three varying densities of Microcystis biomass from eutrophic Lake Taihu. Our study found large amounts of soluble reactive phosphorus and dissolved organophosphorus were released into the lake water during the decomposition process. Bacterial alkaline phosphatase activity showed the peak values during days 5~7 in groups with different chlorophyll-a densities, and then all decreased dramatically to their initial experimental levels during the last stage of decomposition. Bacterial phoX abundances in the three experimental groups increased significantly along with the decomposition process, positively related to the dissolved organic carbon and organophosphorus released by the Microcystis blooms. The genotypes similar to the phoX genes of Alphaproteobacteria were dominant in all groups, whereas the genotypes most similar to the phoX genes of Betaproteobacteria and Cyanobacteria were also abundant in the low density (~15 µg L-1 chlorophyll-a) group. At the end of the decomposition process, the number of genotypes most similar to the phoX of Betaproteobacteria and Cyanobacteria increased in the medium (~150 µg L-1 chlorophyll-a) and high (~1500 µg L-1 chlorophyll-a) density groups. The released organophosphorus and increased bacterial phoX abundance after decomposition of Microcystis aggregates could potentially provide sufficient nutrients and biological conditions for algal proliferation and are probably related to the regeneration of Microcystis blooms in eutrophic lakes.


Subject(s)
Environment, Controlled , Eutrophication , Genes, Bacterial/genetics , Microcystis/genetics , Microcystis/metabolism , Phosphorus/metabolism , Base Sequence , Chemical Phenomena , Genetic Variation , Genotype , Lakes/microbiology , Minerals/metabolism , Phylogeny
4.
Can J Microbiol ; 60(3): 167-71, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24588390

ABSTRACT

To expand current knowledge on the molecular aspects of alkaline phosphatase PhoX in shallow eutrophic freshwaters, we investigated the genetic diversity and abundance of the PhoX-encoding gene (phoX) in 4 ecological regions in Lake Taihu, China, following a gradient in total phosphorus concentrations ranging from hypereutrophic to mesotrophic. Bacterial phoX was heterogeneously distributed with the highest diversity in the eutrophic regions and the highest abundance in the mesotrophic Xukou Bay. The concentrations of total phosphorus and enzymatically hydrolyzable phosphorus determined the distribution of bacterial phoX in Lake Taihu. Most (70.8%) of the phoX-translated proteins had <90% similarity to the PhoX proteins in the GenBank database, suggesting the presence of novel phoX genotypes in Lake Taihu. The low overlap in phoX genotypes (15.8%) between Lake Taihu and some marine ecosystems, and the dominance of the translated proteins most similar to the Alphaproteobacteria-affiliated PhoX, demonstrate the uniqueness of PhoX in eutrophic freshwaters.


Subject(s)
Alkaline Phosphatase/genetics , Bacteria/enzymology , Eutrophication , Lakes , Phosphorus/metabolism , Alkaline Phosphatase/metabolism , Bacteria/classification , Bacteria/genetics , China , Cluster Analysis , Ecosystem , Fresh Water , Genetic Variation , Genotype , Lakes/chemistry , Lakes/microbiology , Likelihood Functions , Molecular Sequence Data , Phylogeny
5.
Huan Jing Ke Xue ; 32(10): 2861-7, 2011 Oct.
Article in Chinese | MEDLINE | ID: mdl-22279893

ABSTRACT

The physical and chemical characteristics were continually monitored during a wind course one time per day, which continued for 10 days, and other water physical and chemical parameters were concomitantly monitored. Organic aggregates (OA) abundance was significantly higher during wind period than calm stage and the maximum of OA abundance, which occurred the same day when wind speed was highest, was 29 times higher than that in the calm stage. Although OA-C, OA-N and OA-P concentration were decreased during wind period, the total C, N and P contend in OA were increased for the increased OA abundance. Additionally, suspended soil (SS), total nitrogen (TN) and total phosphorus (TP) concentration during wind period were significantly higher than that of clam stage, but total dissolved phosphorus (TDP), total dissolved nitrogen (TDN) and soluble reactive phosphorus (SRP) were insignificantly different. During the wind, OA alkaline phosphatase activity (OA-APA) and OA enzymatically hydrolyzable phosphorus (OA-EHP) both increased significantly, which accelerated organic phosphorous mineralization and SRP release. The results indicate that SRP release induced by wind in shallow lakes may comes from suspended matter, especially OA release rather than directly comes from sediment.


Subject(s)
Environmental Monitoring , Eutrophication , Lakes/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Animals , China , Nitrogen/analysis , Particle Size , Phytoplankton/growth & development , Water Movements , Wind , Zooplankton/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL