Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Probiotics Antimicrob Proteins ; 15(4): 925-940, 2023 08.
Article in English | MEDLINE | ID: mdl-35150396

ABSTRACT

The present study was focused on evaluating the effects of Bacillus methylotrophicus SY200 in broiler production. A total of 120 healthy 7-day-old broiler chicks were randomly assigned to four dietary treatments, which included basal diet supplemented with 0%, 0.10%, 0.25%, or 0.50% (w/w) B. methylotrophicus SY200 preparation (1.0 × 109 cfu/g), regarded as negative control group (NC), low-dose group (BML), medium-dose group (BMM), and high-dose group (BMH), respectively. Each treatment was fed the corresponding experimental diet for 35 days. Results showed that dietary supplementation of B. methylotrophicus SY200 could improve broiler weight gain, especially the finisher phase. Further studies suggested that a certain amount of B. methylotrophicus SY200 enhanced the broiler antioxidant status and improved the morphological development of jejunum. Besides, dietary supplementation of B. methylotrophicus SY200 especially in 0.50% levels significantly increased the relative weight of immune organs and Newcastle disease virus antibody titer, similarly, increased mRNA expression levels of claudin-1, claudin-3, zonula occluden-1, and zonula occluden-2 were observed in the jejunum of BMM group. Moreover, B. methylotrophicus SY200 also showed beneficial effects in improving broilers microbiota homeostasis by increasing the number of beneficial bacteria. Conclusively, B. methylotrophicus SY200 could effectively improve the antioxidant status, modulate the intestinal structure, enhance the intestinal mucosal barrier function, and regulate the immune function of broilers, which finally improves the performance of the chicken in the finisher period.


Subject(s)
Antioxidants , Chickens , Animals , Antioxidants/pharmacology , Dietary Supplements , Diet/veterinary , Immunity , Animal Feed/analysis
2.
Probiotics Antimicrob Proteins ; 15(3): 694-705, 2023 06.
Article in English | MEDLINE | ID: mdl-35015242

ABSTRACT

To evaluate the application effect of antimicrobial peptides Gal-13 (AMP Gal-13) instead of antibiotic feed additives, 90 7-day-old Ross 308 broilers were randomly divided into 3 groups. Group A was fed a basic diet as the control, and Groups B and C were supplemented with AMP Gal-13 (100 mg/kg and 200 mg/kg, respectively). After a 35-day feeding experiment, the weight and average daily gain (ADG) of the broilers in Group B were significantly higher than those of the broilers in Group A. The Enterococcus sp. and Escherichia coli counts in the ileum and cecum in Group A were significantly higher than those in Groups B and C, while the Lactic acid bacteria (LAB) and Bifidobacterium sp. counts were significantly lower. The amylase activity of the jejunum in Group B was significantly higher than that in Group A. The villus length (VL): crypt depth (CD) ratios of the jejunum and ileum in Group B were significantly higher than those in Group A. The glutathione peroxidase (GSH-Px) activities in the liver and serum in Groups B and C were significantly higher than those in Group A, while the malondialdehyde (MDA) activity was significantly lower. The titers of Newcastle disease virus (NDV)-specific antibodies were elevated significantly in Group B at the age of 42 days. Additionally, the weights of the spleen and thymus were significantly increased. The expression levels of Il-2, Il-6, Tgf-ß4, Tnf-α, and Mif in the spleen in Groups B and C were significantly downregulated to different degrees; Il-4 expression in Group B was significantly upregulated, while Ifn-γ expression in Group C was significantly upregulated. The results suggested that adding AMP Gal-13 to the diet could improve intestinal digestion, the antioxidant capacity, and immune function, ultimately promoting the growth of broilers.


Subject(s)
Antioxidants , Gastrointestinal Microbiome , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Chickens , Antimicrobial Peptides , Intestines/microbiology , Dietary Supplements/analysis , Diet , Animal Feed/analysis
3.
Food Funct ; 12(21): 10903-10916, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34647113

ABSTRACT

The aim of this study was to explore the molecular mechanism of enhancing the immune effect of the Newcastle disease virus (NDV) vaccine in broilers fed with Bacillus cereus PAS38. The results showed that the NDV antibody titer of broilers in the treatment group supplemented with B. cereus PAS38 was higher than that of the control group, and the difference was significant at 28 days of age (P < 0.05). The spleen, thymus and bursa of fabricius of 42-day-old broilers were quickly collected to construct a differentially expressed gene library of suppression subtractive hybridization (SSH). A total of 31 immune-related differentially expressed genes were screened from three immune organs, of which 15 were up-regulated and 16 were down-regulated. After silencing the up-regulated genes MIF, CD74, DOCK2 and KLHL6, the expression levels of cytokines (Akirin2, NF-κB, IL-2, IL-4, IL-6, IFN-γ and TNF-α) in lymphocytes were reduced to varying degrees. B. cereus PAS38 might be involved in the proliferation, differentiation, activation, migration of B lymphocytes and vaccine antigen presentation by up-regulating the expression of MIF, CD74, DOCK2, KLHL6 and other genes. Moreover, it also stimulated plasma cells to produce immunoglobulins and specific antibodies, thereby improving the humoral immune function of broilers and enhancing the immune effect of the NDV vaccine.


Subject(s)
Bacillus cereus/physiology , Chickens , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Probiotics/pharmacology , Viral Vaccines/immunology , Animal Feed/analysis , Animals , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL