Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Front Pharmacol ; 12: 734670, 2021.
Article in English | MEDLINE | ID: mdl-34867343

ABSTRACT

In the prescription of Traditional Chinese Medicine for lipid metabolism, Polygoni Multiflori Radix Preparata (ZhiHeShouWu, RPMP) was widely used. In recent years, RPMP ethanol extract has been reported for the treatment of non-alcoholic fatty liver disease (NAFLD). However, the role of RPMP ethanol extract in the treatment of NAFLD has not been fully elucidated. Therefore, we examined the optimal therapeutic dose of RPMP ethanol extracts. Afterward, a mouse model of non-alcoholic fatty liver induced by a high-fat diet (HFD) was treated with RPMP ethanol extract to further evaluate the mechanism of action of RPMP ethanol extract treatment. And the serum lipid metabolism indexes and liver function indexes showed that the RPMP ethanol extract in the 1.35 g/kg dose group exhibited better therapeutic effects than the 2.70 g/kg dose group. Meanwhile, RPMP ethanol extract can regulate the biochemical indicators of serum and liver to normal levels, and effectively reduce liver steatosis and lipid deposition. RPMP ethanol extract treatment restored HFD-induced disruption of the compositional structure of the intestinal microbial (IM) and bile acids (BAs) pools. And restore the reduced expression of intestinal barrier-related genes caused by HFD administration, which also effectively regulates the expression of genes related to the metabolism of BAs in mice. Thus, RPMP ethanol extract can effectively improve the abnormal lipid metabolism and hepatic lipid accumulation caused by HFD, which may be related to the regulation of IM composition, maintenance of intestinal barrier function, and normal cholesterol metabolism in the body.

2.
Eur J Pharmacol ; 890: 173655, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33068590

ABSTRACT

Liver plays an important role in bile synthesis, metabolic function, degradation of toxins, new substances synthesis in body. However, hepatopathy morbidity and mortality are increasing year by year around the world, which become a major public health problem. Traditional Chinese medicine (TCM) has a prominent role in the treatment of liver diseases due to its definite curative effect and small side effects. The hepatoprotective effect of berberine has been extensively studied, so we comprehensively summarize the pharmacological activities of lipid metabolism regulation, bile acid adjustment, anti-inflammation, oxidation resistance, anti-fibrosis and anti-cancer and so on. Besides, the metabolism and toxicity of berberine and its new formulations to improve its effectiveness are expounded, providing a reference for the safe and effective clinical use of berberine.


Subject(s)
Berberine/pharmacology , Liver Diseases/prevention & control , Liver/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Berberine/chemistry , Berberine/therapeutic use , Drug Compounding/methods , Humans , Liver/metabolism , Liver/pathology , Liver Diseases/metabolism , Liver Diseases/pathology
3.
J Ethnopharmacol ; 268: 113569, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33186701

ABSTRACT

Ethnopharmacological relevanceQuercetin is the active component of the higher content in PCP, which exerts various biological activities such as anti-obesity effect, anti-inflammatory and anti-oxidant activities in alcoholic liver disease (ALD). AIM OF THE STUDY: P2X7 receptor (P2X7R) plays an important role in health and disease, which can be activated by extracellular ATP to induce a variety of downstream events, including lipid metabolism, inflammatory molecule release, oxidative stress. However, whether the mechanism of quercetin on ethanol-induced hepatic steatosis via P2X7R-mediated haven't been elucidated. MATERIAL AND METHODS: Zebrafish transgenic (fabp10: EGFP) larvae were treated with 100 µM, 50 µM, 25 µM quercetin for 48 h at 3 days post fertilization (dpf), then soaked in 350 mmol/L ethanol for 32 h, treated with 1 mM ATP (P2X7R activator) for 30min. Serum lipids, liver steatosis, oxidative stress factors were respectively detected. The mRNA levels in the related pathways were measured by quantitative Real-Time PCR (RT-qPCR) to investigate the mechanisms. RESULTS: Quercetin improved the liver function via decreasing ALT, AST and γ-GT level of zebrafish with acute ethanol-induced hepatic steatosis and attenuated hepatic TG, TC accumulation. Additionally, quercetin significantly reduced the MDA content and suppressed the ethanol-induced reduction of hepatic oxidative stress biomarkers GSH, CAT and SOD and significantly down-regulated the expression of P2X7R, and up-regulated the expression of phosphatidylinositol 3-kinase (PI3K), Kelch like ECH associated protein1 (Keap1), Nuclear Factor E2 related factor 2 (Nrf2). Moreover, ATP stimulation activated P2X7R, which further mediated the mRNA expressions of PI3K, Keap1 and Nrf2. CONCLUSION: Quercetin exhibited hepatoprotective capacity in zebrafish model, via regulating P2X7R-mediated PI3K/Keap1/Nrf2 oxidative stress signaling pathway.


Subject(s)
Carrier Proteins/biosynthesis , Fatty Liver/metabolism , NF-E2-Related Factor 2/biosynthesis , Phosphatidylinositol 3-Kinases/biosynthesis , Quercetin/therapeutic use , Receptors, Purinergic P2X7/biosynthesis , Zebrafish Proteins/biosynthesis , Animals , Animals, Genetically Modified , Antioxidants/pharmacology , Antioxidants/therapeutic use , Dose-Response Relationship, Drug , Ethanol/toxicity , Fatty Liver/chemically induced , Fatty Liver/prevention & control , Purinergic P2X Receptor Antagonists , Quercetin/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Zebrafish
4.
J Ethnopharmacol ; 262: 113275, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32810620

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Forsythiae Fructuse water extract (FSE) is a water-soluble component extracted from the traditional Chinese medicine Forsythiae Fructuse (The fruit of Forsythia suspensa (Thunb.) Vahl) usually used to treat inflammatory diseases. However, little is known about the therapeutic effect of FSE on liver fibrosis. AIM OF THE STUDY: The purpose of our study was to investigate the therapeutic effect of FSE on liver fibrosis and reveal the underlying mechanism. MATERIALS AND METHODS: Liver fibrosis model was established by subcutaneous injection of olive oil containing 40% CCl4. Rat liver tissue morphologic pathology was investigated by using HE staining, Masson staining and Sirius red staining. Several biochemical markers including liver (ALT, AST, AKP, γ-GT), fibrosis (HA, LN, PC III, Col IV) and inflammation (IL-6, IL-1ß, TNF-α) were determined by using Elisa kits. Immunohistochemistry was used to observe the distribution of α-SMA and COL1 in liver tissue. Effects of FSE on inflammatory pathway (TLR4/MyD88/NF-κB) and fibrotic pathway (TGF-ß/smads) were detected by western blot and qPCR. RESULTS: The results showed that hepatic histopathological injury, abnormal liver function, fibrosis and inflammation induced by CCl4 were improved by FSE (2.5, 5 g/kg). Immunohistochemistry and western blot results indicated that the expression of α-SMA and COL1 in liver tissue was inhibited by FSE (2.5, 5 g/kg). Western blot and qPCR results further proved that FSE (2.5, 5 g/kg) inhibited the transduction of TLR4/MyD88/NF-κB and TGF-ß/smads signaling pathways. CONCLUSION: FSE can inhibit the expression of inflammatory factors and fibrotic cytokines, reduce liver injury, and inhibit the development of liver fibrosis through TLR4/MyD88/NF-κB and TGF-ß/smads signaling pathways.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Forsythia , Liver Cirrhosis/drug therapy , Myeloid Differentiation Factor 88/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Toll-Like Receptor 4/antagonists & inhibitors , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Female , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology , Smad Proteins/antagonists & inhibitors , Smad Proteins/metabolism , Toll-Like Receptor 4/metabolism , Transforming Growth Factor beta/metabolism , Water
5.
Drug Des Devel Ther ; 14: 1493-1506, 2020.
Article in English | MEDLINE | ID: mdl-32346285

ABSTRACT

PURPOSE: Nonalcoholic fatty liver disease (NAFLD) has become a predictor of death in many diseases. This study was carried out to investigate the therapeutic effect of Radix Polygoni Multiflori Preparata (RPMP) and its main component emodin on egg yolk powder-induced NAFLD in zebrafish. Further investigation was performed to explore whether emodin was the main component of RPMP for the treatment of NAFLD as well as the underlying therapeutic mechanism of RPMP and emodin. METHODS: Zebrafish were divided into control group, egg yolk powder group, RPMP group and emodin group. The obesity of zebrafish was evaluated by body weight, body length and BMI. The content of lipid was detected by triglyceride (TG), total cholesterol (TC) reagent kit and the fatty acid was detected by nonesterified free fatty acids (NEFA) reagent kit. HE staining was used to detect the histological structure of liver. Whole-mount Oil red O staining and Frozen oil red O staining were carried out to investigate the lipid accumulation in liver. KEGG and STRING databases were performed to analyze the potential role of AMPK between insulin resistance (IR) and fatty acid oxidation. Western blot and RT-qPCR were carried out for mechanism research. RESULTS: RPMP and emodin significantly reduced zebrafish weight, body length and BMI. Both RPMP and emodin treatment could reduce the lipid deposition in zebrafish liver. RPMP significantly reduced the content of TG. However, emodin significantly reduced the contents of TG, TC and NEFA in zebrafish with NAFLD. The protein interaction network indicated that AMPK participated in both IR and fatty acid oxidation. Further investigation indicated that RPMP and emodin reduced hepatic lipogenesis via up-regulating the expressions of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT2), amp-activated protein kinase alpha (AMPKα), proliferator-activated receptor alpha (PPARα), carnitine palmitoyl transferase 1a (CPT-1a) and acyl-coenzyme A oxidase 1 (ACOX1). CONCLUSION: These findings suggest that emodin is the main component of RPMP for the treatment of NAFLD, which is closely related to the regulation of AMPK signaling pathway which increases IR and fatty acid oxidation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Drugs, Chinese Herbal/pharmacology , Emodin/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Plant Extracts/pharmacology , Signal Transduction/drug effects , Zebrafish/metabolism , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Emodin/chemistry , Emodin/isolation & purification , Molecular Structure , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Structure-Activity Relationship
6.
J Ethnopharmacol ; 248: 112361, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31683033

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine Forsythiae Fructus is the dried fruit of Forsythia suspensa (Thunb.) Vahl. It is commonly used to clear heat and detoxify, reduce swelling and disperse knot, and evacuate wind and heat. AIM OF THE STUDY: Inflammation is involved in liver fibrosis. Phillygenin (PHI) is a kind of lignans extracted and separated from Forsythiae Fructus, which has been reported to have a good anti-inflammatory effect. Therefore, we aimed to explore whether PHI has a therapeutic effect on liver fibrosis caused by inflammation. MATERIALS AND METHODS: Firstly, the induction of the LX2 cells inflammatory model and fibrosis model by LPS with different concentrations were studied. Then, high, medium and low doses PHI was given for intervention therapy. The secretion of IL-6, IL-1ß and TNF-α inflammatory factors were detected by ELISA kit, and the expression of collagen I and α-SMA was detected by Western blot and RT-qPCR. The possible mechanism of PHI on TLR4/MyD88/NF-κB signal pathway was studied by computer-aided drug design software and the results were further verified by Western blot and RT-qPCR experiments. RESULTS: The results showed that LPS could promote the expression of IL-6, IL-1ß and TNF-α and the expression of collagen I and α-SMA, indicating that LPS could induce inflammation and fibrosis in LX2 cells. PHI could inhibit LX2 cell activation and fibrotic cytokine expression by inhibiting LPS-induced pro-inflammatory reaction. Molecular docking results showed that PHI could successfully dock with TLR4, MyD88, IKKß, p65, IκBα, and TAK1 proteins. Subsequently, Western blot and qPCR results further proved that PHI could inhibit the proteins expression in TLR4/MyD88/NF-κB signal pathway which were consistent with the molecular docking results. CONCLUSION: PHI can inhibit LPS-induced pro-inflammatory reaction and LX2 cell activation through TLR4/MyD88/NF-κB signaling pathway, thereby inhibiting liver fibrosis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Hepatic Stellate Cells/drug effects , Hepatitis/prevention & control , Lignans/pharmacology , Lipopolysaccharides/toxicity , Liver Cirrhosis/prevention & control , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Actins/metabolism , Cell Line , Collagen Type I/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatitis/metabolism , Hepatitis/pathology , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL